1
|
Jacques C, Bacqueville D, Jamin EL, Maitre M, Delsol C, Simcic-Mori A, Bianchi P, Noustens A, Jouanin I, Debrauwer L, Bessou-Touya S, Stockfleth E, Duplan H. Multi-omics approach to understand the impact of sun exposure on an in vitro skin ecosystem and evaluate a new broad-spectrum sunscreen. Photochem Photobiol 2024; 100:477-490. [PMID: 37485720 DOI: 10.1111/php.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
A reconstructed human epidermal model (RHE) colonized with human microbiota and sebum was developed to reproduce the complexity of the skin ecosystem in vitro. The RHE model was exposed to simulated solar radiation (SSR) with or without SPF50+ sunscreen (with UVB, UVA, long-UVA, and visible light protection). Structural identification of discriminant metabolites was acquired by nuclear magnetic resonance and metabolomic fingerprints were identified using reverse phase-ultra high-performance liquid chromatography-high resolution mass spectrometry, followed by pathway enrichment analysis. Over 50 metabolites were significantly altered by SSR (p < 0.05, log2 values), showing high skin oxidative stress (glutathione and purine pathways, urea cycle) and altered skin microbiota (branched-chain amino acid cycle and tryptophan pathway). 16S and internal transcribed spacer rRNA sequencing showed the relative abundance of various bacteria and fungi altered by SSR. This study identified highly accurate metabolomic fingerprints and metagenomic modifications of sun-exposed skin to help elucidate the interactions between the skin and its microbiota. Application of SPF50+ sunscreen protected the skin ecosystem model from the deleterious effects of SSR and preserved the physiological interactions within the skin ecosystem. These innovative technologies could thus be used to evaluate the effectiveness of sunscreen.
Collapse
Affiliation(s)
- Carine Jacques
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Daniel Bacqueville
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Emilien L Jamin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Martine Maitre
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | | | - Aimée Simcic-Mori
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Pascale Bianchi
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Anais Noustens
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Isabelle Jouanin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Debrauwer
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Eggert Stockfleth
- Department of Dermatology, Venerology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Hélène Duplan
- Pierre Fabre Dermo-Cosmetics and Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
2
|
Phenylene Bis-Diphenyltriazine (TriAsorB), a new sunfilter protecting the skin against both UVB + UVA and blue light radiations. Photochem Photobiol Sci 2021; 20:1475-1486. [PMID: 34643936 DOI: 10.1007/s43630-021-00114-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Sunlight induces actinic keratosis, skin cancers and photoaging. Photoprotection is thus a major issue in public health to prevent the harmful effects of solar ultraviolet (UV) radiations. Recent data have shown that the visible (VIS) and infrared (IR) radiations can lead to skin damage by oxidative stress, suggesting that a balanced protection across the entire spectrum of sunlight is necessary to prevent cutaneous alterations. In this context, we developed a new generation of sunfilter called Phenylene Bis-Diphenyltriazine or TriAsorB (CAS N°55514-22-2). The aim of the present study was to assess the photoprotective efficacy of TriAsorB from UV to IR light. Spectrophotometric assays were performed to measure absorption and reflectance of TriAsorB in the different spectral ranges of sunlight: UV, VIS including blue light or high energy visible (HEV) and IR. DNA damage was evaluated using reconstructed human epidermis (RHE): 8-hydroxy-2'-deoxyguanosine (8OHdG) in response to HEV exposure, pyrimidine dimers (CPDs) and (6-4) photoproducts following solar-simulated radiation (SSR). TriAsorB is a broad spectrum UVB + UVA filter including long UVA. Interestingly, it also absorbs VIS radiations, especially in the HEV region. These radiations are also reflected. Protection in the IR spectral range is weak. Furthermore, the sunfilter specifically protects the skin against the oxidative lesions 8OHdG induced by HEV and prevents SSR-induced DNA damage. Thus, TriAsorB is an innovative sunfilter that might be used in sun care products for skin photoprotection from UV to VIS radiations. Finally, it prevents sunlight genotoxicity and protected the skin against solar radiations, especially blue light.
Collapse
|
3
|
Romanhole RC, Fava ALM, Tundisi LL, Macedo LMD, Santos ÉMD, Ataide JA, Mazzola PG. Unplanned absorption of sunscreen ingredients: Impact of formulation and evaluation methods. Int J Pharm 2020; 591:120013. [PMID: 33132151 DOI: 10.1016/j.ijpharm.2020.120013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Permeation of sunscreens agents reduces its effectiveness and safety, leading to systemic circulation and causing unknown adverse effects. In order to maintain the sunscreen efficacy and safety, the filters must stay on the skin surface, with minimum penetration through dermis. Even facing the possibility of filters permeation, the use of sunscreen is important to avoid skin damage as erythema, free-radicals formation, skin ageing and skin cancer, caused by ultraviolet radiation. Aiming potential side effects caused by topical absorption of sunscreens, studies are carried to improve formulation characteristics and stability, reduce skin permeation and evaluate sun protections factor (SPF). Current assays to detect the permeation of sunscreens involve in vivo or in vitro studies, to simulate physiological conditions of use. The aim of this review is to revisit sunscreen skin permeation data over the last decade and the factors that can enhance skin permeation or improve the sunscreen efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
4
|
Bacqueville D, Douki T, Duprat L, Rebelo-Moreira S, Guiraud B, Dromigny H, Perier V, Bessou-Touya S, Duplan H. A new hair follicle-derived human epidermal model for the evaluation of sunscreen genoprotection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:31-8. [PMID: 26163483 DOI: 10.1016/j.jphotobiol.2015.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 01/27/2023]
Abstract
Induction of skin cancer is the most deleterious effect of excessive exposure to sunlight. Accurate evaluation of sunscreens to protect the genome is thus of major importance. In particular, the ability of suncare products to prevent the formation of DNA damage should be evaluated more directly since the Sun Protection Factor is only related to erythema induction. For this purpose, we developed an in vitro approach using a recently characterized reconstituted human epidermis (RHE) model engineered from hair follicle. The relevance of this skin substitute in terms of UV-induced genotoxicity was compared to ex vivo explants exposed to solar-simulated radiation (SSR). The yield of bipyrimidine photoproducts, their rate of repair, and the induction of apoptosis were very similar in both types of skin samples. In order to evaluate the protection afforded by sunscreen against DNA damage, bipyrimidine photoproducts were quantified in tissue models following SSR exposure in the presence or absence of a SPF50+ formula. A rather high DNA protection factor of approximately 20 was found in RHE, very similar to that determined for explants. Thus, RHE is a good surrogate to human skin, and also a convenient and useful tool for investigation of the genoprotection of sunscreens.
Collapse
Affiliation(s)
- D Bacqueville
- Service de Pharmacologie et Pharmacocinétique cutanée, Centre R&D Pierre Fabre, Toulouse, France.
| | - T Douki
- Univ. Grenoble Alpes, INAC, LCIB, LAN, F-38000 Grenoble, France; CEA, INAC, SCIB, LAN, F-38000 Grenoble, France
| | - L Duprat
- Service de Pharmacologie et Pharmacocinétique cutanée, Centre R&D Pierre Fabre, Toulouse, France
| | - S Rebelo-Moreira
- Univ. Grenoble Alpes, INAC, LCIB, LAN, F-38000 Grenoble, France; CEA, INAC, SCIB, LAN, F-38000 Grenoble, France
| | - B Guiraud
- Service de Pharmacologie et Pharmacocinétique cutanée, Centre R&D Pierre Fabre, Toulouse, France
| | - H Dromigny
- Service de Pharmacologie et Pharmacocinétique cutanée, Centre R&D Pierre Fabre, Toulouse, France
| | - V Perier
- Service de Pharmacologie et Pharmacocinétique cutanée, Centre R&D Pierre Fabre, Toulouse, France
| | - S Bessou-Touya
- Service de Pharmacologie et Pharmacocinétique cutanée, Centre R&D Pierre Fabre, Toulouse, France
| | - H Duplan
- Service de Pharmacologie et Pharmacocinétique cutanée, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
5
|
Peramo A, Marcelo CL. Visible effects of rapamycin (sirolimus) on human skin explants in vitro. Arch Dermatol Res 2012; 305:163-71. [DOI: 10.1007/s00403-012-1288-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/13/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
6
|
Gambichler T, Tigges C, Dith A, Skrygan M, Scola N, Altmeyer P, Kreuter A. Impact of etanercept treatment on ultraviolet B-induced inflammation, cell cycle regulation and DNA damage. Br J Dermatol 2010; 164:110-5. [DOI: 10.1111/j.1365-2133.2010.10099.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Jacques C, Perdu E, Dorio C, Bacqueville D, Mavon A, Zalko D. Percutaneous absorption and metabolism of [14C]-ethoxycoumarin in a pig ear skin model. Toxicol In Vitro 2010; 24:1426-34. [DOI: 10.1016/j.tiv.2010.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/19/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
|
8
|
Bacqueville D, Mavon A. Comparative analysis of solar radiation-induced cellular damage betweenex vivoporcine skin organ culture andin vitroreconstructed human epidermis. Int J Cosmet Sci 2009; 31:293-302. [DOI: 10.1111/j.1468-2494.2009.00506.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|