1
|
Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochem Photobiol Sci 2022; 21:557-584. [DOI: 10.1007/s43630-022-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
2
|
Borin VA, Wiebeler C, Schapiro I. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin. Faraday Discuss 2019; 207:137-152. [PMID: 29393940 DOI: 10.1039/c7fd00198c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The primary photochemical reaction of the green-absorbing proteorhodopsin is studied by means of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The simulations are based on a homology model derived from the blue-absorbing proteorhodopsin crystal structure. The geometry of retinal and the surrounding sidechains in the protein binding pocket were optimized using the QM/MM method. Starting from this geometry the isomerization was studied with a relaxed scan along the C13[double bond, length as m-dash]C14 dihedral. It revealed an "aborted bicycle pedal" mechanism of isomerization that was originally proposed by Warshel for bovine rhodopsin and bacteriorhodopsin. However, the isomerization involved the concerted rotation about C13[double bond, length as m-dash]C14 and C15[double bond, length as m-dash]N, with the latter being highly twisted but not isomerized. Further, the simulation showed an increased steric interaction between the hydrogen at the C14 of the isomerizing bond and the hydroxyl group at the neighbouring tyrosine 200. In addition, we have simulated a nonadiabatic trajectory which showed the timing of the isomerization. In the first 20 fs upon excitation the order of the conjugated double and single bonds is inverted, consecutively the C13[double bond, length as m-dash]C14 rotation is activated for 200 fs until the S1-S0 transition is detected. However, the isomerization is reverted due to the specific interaction with the tyrosine as observed along the relaxed scan calculation. Our simulations indicate that the retinal - tyrosine 200 interaction plays an important role in the outcome of the photoisomerization.
Collapse
Affiliation(s)
- Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
3
|
El-Tahawy MMT, Nenov A, Garavelli M. Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes. J Chem Theory Comput 2016; 12:4460-75. [DOI: 10.1021/acs.jctc.6b00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohsen M. T. El-Tahawy
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Chemistry
Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Artur Nenov
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Université
de Lyon, Université Claude Bernard Lyon 1, ENS Lyon, Centre
Nationale de Recherche Scientifique, 46 allée d’Italie, 69007 Lyon Cedex 07, France
| |
Collapse
|
4
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Johann Wolfgang Goethe University, Institute for Physical and Theoretical Chemistry, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Johann Wolfgang Goethe University, Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Zhu J, Paparelli L, Hospes M, Arents J, Kennis JTM, van Stokkum IHM, Hellingwerf KJ, Groot ML. Photoionization and Electron Radical Recombination Dynamics in Photoactive Yellow Protein Investigated by Ultrafast Spectroscopy in the Visible and Near-Infrared Spectral Region. J Phys Chem B 2013; 117:11042-8. [DOI: 10.1021/jp311906f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingyi Zhu
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Laura Paparelli
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Marijke Hospes
- Laboratory for Microbiology,
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands
| | - Jos Arents
- Laboratory for Microbiology,
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands
| | - John T. M. Kennis
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Klaas J. Hellingwerf
- Laboratory for Microbiology,
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands
| | - Marie Louise Groot
- Department
of Physics and Astronomy,
Faculty of Sciences, VU University, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Janke C, Scholz F, Becker-Baldus J, Glaubitz C, Wood PG, Bamberg E, Wachtveitl J, Bamann C. Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina. Biochemistry 2013; 52:2750-63. [PMID: 23586665 DOI: 10.1021/bi301412n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Retinylidene photoreceptors are ubiquitously present in marine protists as first documented by the identification of green proteorhodopsin (GPR). We present a detailed investigation of a rhodopsin from the protist Oxyrrhis marina (OR1) with respect to its spectroscopic properties and to its vectorial proton transport. Despite its homology to GPR, OR1's features differ markedly in its pH dependence. Protonation of the proton acceptor starts at pH below 4 and is sensitive to the ionic conditions. The mutation of a conserved histidine H62 did not influence the pK(a) value in a similar manner as in other proteorhodopsins where the charged histidine interacts with the proton acceptor forming the so-called His-Asp cluster. Mutational and pH-induced effects were further reflected in the temporal behavior upon light excitation ranging from femtoseconds to seconds. The primary photodynamics exhibits a high sensitivity to the environment of the proton acceptor D100 that are correlated to the different initial states. The mutation of the H62 does not affect photoisomerization at neutral pH. This is in agreement with NMR data indicating the absence of the His-Asp cluster. The subsequent steps in the photocycle revealed protonation reactions at the Schiff base coupled to proton pumping even at low pH. The main electrogenic steps are associated with the reprotonation of the Schiff base and internal proton donor. Hence, OR1 shows a different theme of the His-Asp organization where the low pK(a) of the proton acceptor is not dominated by this interaction, but by other electrostatic factors.
Collapse
Affiliation(s)
- Christian Janke
- Max-Planck-Institut für Biophysik, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Herz J, Verhoefen MK, Weber I, Bamann C, Glaubitz C, Wachtveitl J. Critical role of Asp227 in the photocycle of proteorhodopsin. Biochemistry 2012; 51:5589-600. [PMID: 22738119 DOI: 10.1021/bi3003764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photocycle of the proton acceptor complex mutant D227N of the bacterial retinal protein proteorhodopsin is investigated employing steady state pH-titration experiments in the UV-visible range as well as femtosecond-pump-probe spectroscopy and flash photolysis in the visible spectral range. The evaluation of the pH-dependent spectra showed that the neutralization of the charge at position 227 has a remarkable influence on the ground state properties of the protein. Both the pK(a) values of the primary proton acceptor and of the Schiff base are considerably decreased. Femtosecond-time-resolved measurements demonstrate that the general S(1) deactivation pathway; that is, the K-state formation is preserved in the D227N mutant. However, the pH-dependence of the reaction rate is lost by the substitution of Asp227 with an asparagine. Also no significant kinetic differences are observed upon deuteration. This is explained by the lack of a strongly hydrogen-bonded water in the vicinity of Asp97, Asp227, and the Schiff base or a change in the hydrogen bonding of it (Ikeda et al. (2007) Biochemistry 46, 5365-5373). The flash photolysis measurements prove a considerably elongated photocycle with pronounced pH-dependence. Interestingly, at pH 9 the M-state is visible until the end of the reaction cycle, leading to the conclusion that the mutation does not only lower the pK(a) of the Schiff base in the unphotolyzed ground state but also prevents an efficient reprotonation reaction.
Collapse
Affiliation(s)
- Julia Herz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V. Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 2011; 50:11942-6. [PMID: 22034093 PMCID: PMC4234116 DOI: 10.1002/anie.201105648] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Sina Reckel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany, Fax: (+49)-69-798-29632
| | - Daniel Gottstein
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany, Fax: (+49)-69-798-29632
| | - Jochen Stehle
- Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7-9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany, Fax: (+49)-69-798-29632
| | - Mirka-Kristin Verhoefen
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Mitsuhiro Takeda
- Structural Biology Research Center, Nagoya University, Furo‐cho, Chikusa-ku, 464-8601, Japan
| | - Robert Silvers
- Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7-9, 60438 Frankfurt, Germany
| | - Masatsune Kainosho
- Structural Biology Research Center, Nagoya University, Furo‐cho, Chikusa-ku, 464-8601, Japan; Center for Priority Areas, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany, Fax: (+49)-69-798-29632
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany, Fax: (+49)-69-798-29632
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7-9, 60438 Frankfurt, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany, Fax: (+49)-69-798-29632; Frankfurt Institute for Advanced Studies, Goethe University Frankfurt, Ruth-Moufang-Str.1, 60438 Frankfurt am Main, Germany; Center for Priority Areas, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany, Fax: (+49)-69-798-29632
| |
Collapse
|
9
|
Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V. Solution NMR Structure of Proteorhodopsin. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105648] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Hempelmann F, Hölper S, Verhoefen MK, Woerner AC, Köhler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C. His75−Asp97 Cluster in Green Proteorhodopsin. J Am Chem Soc 2011; 133:4645-54. [DOI: 10.1021/ja111116a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Franziska Hempelmann
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mirka-Kristin Verhoefen
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas C. Woerner
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Köhler
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sarah-Anna Fiedler
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nicole Pfleger
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Josef Wachtveitl
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance and ‡Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Verhoefen MK, Lenz MO, Amarie S, Klare JP, Tittor J, Oesterhelt D, Engelhard M, Wachtveitl J. Primary Reaction of Sensory Rhodopsin II Mutant D75N and the Influence of Azide. Biochemistry 2009; 48:9677-83. [DOI: 10.1021/bi901197c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mirka-Kristin Verhoefen
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Martin O. Lenz
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Sergiu Amarie
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Johann P. Klare
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44139 Dortmund, Germany
| | - Jörg Tittor
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Dieter Oesterhelt
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Martin Engelhard
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44139 Dortmund, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|