1
|
MacFarlane ER, Donaldson PJ, Grey AC. UV light and the ocular lens: a review of exposure models and resulting biomolecular changes. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1414483. [PMID: 39301012 PMCID: PMC11410779 DOI: 10.3389/fopht.2024.1414483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
UV light is known to cause damage to biomolecules in living tissue. Tissues of the eye that play highly specialised roles in forming our sense of sight are uniquely exposed to light of all wavelengths. While these tissues have evolved protective mechanisms to resist damage from UV wavelengths, prolonged exposure is thought to lead to pathological changes. In the lens, UV light exposure is a risk factor for the development of cataract, which is a condition that is characterised by opacity that impairs its function as a focusing element in the eye. Cataract can affect spatially distinct regions of the lens. Age-related nuclear cataract is the most prevalent form of cataract and is strongly associated with oxidative stress and a decrease in the antioxidant capacity of the central lens region. Since UV light can generate reactive oxygen species to induce oxidative stress, its effects on lens structure, transparency, and biochemistry have been extensively investigated in animal models in order to better understand human cataract aetiology. A review of the different light exposure models and the advances in mechanistic understanding gained from these models is presented.
Collapse
Affiliation(s)
- Emily R MacFarlane
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Anderson G, Borooah S, Megaw R, Bagnaninchi P, Weller R, McLeod A, Dhillon B. UVR and RPE - The Good, the Bad and the degenerate Macula. Prog Retin Eye Res 2024; 100:101233. [PMID: 38135244 DOI: 10.1016/j.preteyeres.2023.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Ultraviolet Radiation (UVR) has a well-established causative influence within the aetiology of conditions of the skin and the anterior segment of the eye. However, a grounded assessment of the role of UVR within conditions of the retina has been hampered by a historical lack of quantitative, and spectrally resolved, assessment of how UVR impacts upon the retina in terms congruent with contemporary theories of ageing. In this review, we sought to summarise the key findings of research investigating the connection between UVR exposure in retinal cytopathology while identifying necessary avenues for future research which can deliver a deeper understanding of UVR's place within the retinal risk landscape.
Collapse
Affiliation(s)
- Graham Anderson
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, EH16 4UU, UK
| | - Shyamanga Borooah
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, CA, 92093-0946, USA
| | - Roly Megaw
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, EH4 2XU, UK; Department of Clinical Ophthalmology, National Health Service Scotland, Edinburgh, EH3 9HA, UK
| | - Pierre Bagnaninchi
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, EH16 4UU, UK; Robert O Curle Eyelab, Instute for Regeneration and Repair, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Richard Weller
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, EH16 4TJ, UK
| | - Andrew McLeod
- School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, EH9 3FF, UK
| | - Baljean Dhillon
- Department of Clinical Ophthalmology, National Health Service Scotland, Edinburgh, EH3 9HA, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, EH16 4SB, UK; Robert O Curle Eyelab, Instute for Regeneration and Repair, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
3
|
Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther 2023; 12:755-788. [PMID: 36808601 PMCID: PMC9938358 DOI: 10.1007/s40123-023-00675-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
INTRODUCTION Exposure to blue light has seriously increased in our environment since the arrival of light emitting diodes (LEDs) and, in recent years, the proliferation of digital devices rich in blue light. This raises some questions about its potential deleterious effects on eye health. The aim of this narrative review is to provide an update on the ocular effects of blue light and to discuss the efficiency of methods of protection and prevention against potential blue light-induced ocular injury. METHODS The search of relevant English articles was conducted in PubMed, Medline, and Google Scholar databases until December 2022. RESULTS Blue light exposure provokes photochemical reactions in most eye tissues, in particular the cornea, the lens, and the retina. In vitro and in vivo studies have shown that certain exposures to blue light (depending on the wavelength or intensity) can cause temporary or permanent damage to some structures of the eye, especially the retina. However, currently, there is no evidence that screen use and LEDs in normal use are deleterious to the human retina. Regarding protection, there is currently no evidence of a beneficial effect of blue blocking lenses for the prevention of eye diseases, in particular age-related macular degeneration (AMD). In humans, macular pigments (composed of lutein and zeaxanthin) represent a natural protection by filtering blue light, and can be increased through increased intake from foods or food supplements. These nutrients are associated with lower risk for AMD and cataract. Antioxidants such as vitamins C, E, or zinc might also contribute to the prevention of photochemical ocular damage by preventing oxidative stress. CONCLUSION Currently, there is no evidence that LEDs in normal use at domestic intensity levels or in screen devices are retinotoxic to the human eye. However, the potential toxicity of long-term cumulative exposure and the dose-response effect are currently unknown.
Collapse
|
4
|
Osik NA, Zelentsova EA, Sharshov KA, Tsentalovich YP. Nicotinamide adenine dinucleotide reduced (NADH) is a natural UV filter of certain bird lens. Sci Rep 2022; 12:16850. [PMID: 36207404 PMCID: PMC9546832 DOI: 10.1038/s41598-022-21139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/14/2022] Open
Abstract
In this work, we for the first time report the identification of UV filters in the bird eye lens. We found that lenses of some raptors (black kite, common buzzard) and waterfowl (birds from Podicipedidae family) contain unusually high levels of reduced nicotinamide adenine dinucleotide (NADH)—a compound with high absorption in the UV-A range with a maximum at 340 nm. The lens metabolome of these birds also features an extremely low [NAD +]/[NADH] ratio. Chemometric analysis demonstrates that the differences between the metabolomic compositions of lenses with low and high NADH abundances should be attributed to the taxonomic features of bird species rather to the influence of the low [NAD +]/[NADH] ratio. We attributed this observation to the low metabolic activity in lens fiber cells, which make up the bulk of the lens tissue. Photochemical measurements show that properties of NADH as a UV filter are as good as that of UV filters in the human lens, including strong absorption in the UV-A spectral region, high photostability under both aerobic and anaerobic conditions, low yields of triplet state, fluorescence, and radicals under irradiation. Lenticular UV filters protect the retina and the lens from photo-induced damages and improve the visual acuity by reducing chromatic aberrations; therefore, the results obtained contribute to our understanding of the extremely high acuity of the raptor vision.
Collapse
Affiliation(s)
- Nataliya A Osik
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk, 630090, Russia
| | | | - Kirill A Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Timakova 2, Novosibirsk, 630117, Russia
| | - Yuri P Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk, 630090, Russia.
| |
Collapse
|
5
|
Corneal UV Protective Effects of a Topical Antioxidant Formulation: A Pilot Study on In Vivo Rabbits. Int J Mol Sci 2020; 21:ijms21155426. [PMID: 32751471 PMCID: PMC7432813 DOI: 10.3390/ijms21155426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023] Open
Abstract
This study aimed to evaluate the protective effect of a topical antioxidant and ultraviolet (UV) shielding action formulation containing riboflavin and D-α-tocopherol polyethylene glycol succinate (TPGS) vitamin E against corneal UV-induced damage in vivo rabbit eyes. In vivo experiments were performed using male albino rabbits, which were divided into four groups. The control group (CG) did not receive any UV irradiation; the first group (IG) was irradiated with a UV-B−UV-A lamp for 30 min; the second (G30) and third (G60) groups received UV irradiation for 30 and 60 min, respectively, and were topically treated with one drop of the antioxidant and shielding formulation every 15 min, starting one hour before irradiation, until the end of UV exposure. The cornea of the IG group showed irregular thickening, detachment of residual fragments of the Descemet membrane, stromal fluid swelling with consequent collagen fiber disorganization and disruption, and inflammation. The cornea of the G30 group showed edema, a mild thickening of the Descemet membrane without fibrillar collagen disruption and focal discoloration, or inflammation. In the G60 group, the cornea showed a more severe thickening, a more abundant fluid accumulation underneath the Descemet membrane with focal detachment, and no signs of severe tissue alterations, as were recorded in the IG group. Our results demonstrate that topical application of eye drops containing riboflavin and TPGS vitamin E counteracts UV corneal injury in exposed rabbits.
Collapse
|
6
|
Katti C, Stacey-Solis M, Coronel-Rojas NA, Davies WIL. The Diversity and Adaptive Evolution of Visual Photopigments in Reptiles. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
7
|
Hammond BR, Renzi-Hammond L. Individual variation in the transmission of UVB radiation in the young adult eye. PLoS One 2018; 13:e0199940. [PMID: 30001366 PMCID: PMC6042695 DOI: 10.1371/journal.pone.0199940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
Objectives Data obtained mostly from animal models and ex vivo samples show that a small portion of ultraviolet light (UV, 300–400 nm) penetrates the cornea and crystalline lens and impinges on the human retina. UV transmission to the retina appears to be unique to the young and some older pseudophakes. In this study, we determine the variation in UV transmission in a relatively homogenous sample of young adults. Methods 42 subjects were tested (M = 19 ± 1.3 years). Absolute thresholds to UV radiation were collected (λmax = 315 nm, 305–325). Macular pigment optical density (MPOD, measured using heterochromatic flicker photometry) and iris color (using a standardized color scale) were also assessed as potential covariates. Results All of the subjects could detect UV radiation at 315 nm but individual variation was large (over a factor of 30). Higher MPOD and darker iridies were not related to UV sensitivity in this young sample. Males, however, were more sensitive to UV than the females (p<0.05). Conclusions The large individual differences in UV reaching the retina of younger individuals suggests equally significant vulnerability to the actinic effects of this highly energetic light.
Collapse
Affiliation(s)
- Billy R. Hammond
- Brain and Behavioral Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Lisa Renzi-Hammond
- Institute of Gerontology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
8
|
An MJ, Kim CH, Nam GY, Kim DH, Rhee S, Cho SJ, Kim JW. Transcriptome analysis for UVB-induced phototoxicity in mouse retina. ENVIRONMENTAL TOXICOLOGY 2018; 33:52-62. [PMID: 29044990 DOI: 10.1002/tox.22494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Throughout life, the human eye is continuously exposed to sunlight and artificial lighting. Ambient light exposure can lead to visual impairment and transient or permanent blindness. To mimic benign light stress conditions, Mus musculus eyes were exposed to low-energy UVB radiation, ensuring no severe morphological changes in the retinal structure post-exposure. We performed RNA-seq analysis to reveal the early transcriptional changes and key molecular pathways involved before the activation of the canonical cell death pathway. RNA-seq analysis identified 537 genes that were differentially modulated, out of which 126 were clearly up regulated (>2-fold, P < .01) and 51 were significantly down regulated (<2-fold, P < .01) in response to UVB irradiation in the mouse retina. Gene ontology analysis revealed that UVB exposure affected pathways for cellular stress and signaling (eg, Creb3, Ddrgk1, Grin1, Map7, Uqcc2, Uqcrb), regulation of chromatin and gene expression (eg, Chd5, Jarid2, Kat6a, Smarcc2, Sumo1, Zfp84), transcription factors (eg, Asxl2, Atf7, Per1, Phox2a, Rxra), RNA processing, and neuronal genes (eg, B4gal2, Drd1, Grm5, Rnf40, Rnps1, Usp39, Wbp4). The differentially expressed genes from the RNA-seq analysis were validated by quantitative PCR. Both analyses yielded similar gene expression patterns. The genes and pathways identified here improve the understanding of early transcriptional responses to UVB irradiation. They may also help in elucidating the genes responsible for the inherent susceptibility of humans to UVB-induced retinal diseases.
Collapse
Affiliation(s)
- Mi-Jin An
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gyu-You Nam
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung-Jin Cho
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
9
|
Marquioni-Ramella MD, Suburo AM. Photo-damage, photo-protection and age-related macular degeneration. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00188a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The course of Age-related Macular Degeneration (AMD) is described as the effect of light (400–580 nm) on various molecular targets in photoreceptors and the retinal pigment epithelium (RPE). Photo-damage is followed by inflammation, increasing oxidative stress and, probably, unveiling new photosensitive molecules.
Collapse
Affiliation(s)
| | - Angela M. Suburo
- Medicina Celular y Molecular
- Facultad de Ciencias Biomédicas
- Universidad Austral
- Pilar B1629AHJ
- Argentina
| |
Collapse
|
10
|
Hammond BR, Johnson BA, George ER. Oxidative photodegradation of ocular tissues: beneficial effects of filtering and exogenous antioxidants. Exp Eye Res 2014; 129:135-50. [PMID: 25236792 DOI: 10.1016/j.exer.2014.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 01/17/2023]
Abstract
The fact that light is necessary for life is generally accepted as an axiom. The extent to which light interacts and influences human biology, however, is often not fully appreciated. Exposure to sunlight, for instance, can both promote and degrade human health. There is now general scientific consensus that, although the eye evolved to respond to light, it is also damaged by excessive exposure. Light-mediated ocular damage is involved in the pathophysiology of many common forms of blindness. The type of ocular tissue damage induced by light exposure depends on the extent of exposure and wavelength. The tissues of the lens, cornea, and retina contain specific chemical moieties that have been proven to exhibit light-mediated oxidative degradation. Proteins and lipids present in the cornea, lens, and retina, meet all of the physical requirements known to initiate the process of oxidative photodegradation upon exposure to solar radiation. As such, different mechanisms have evolved in the lens, cornea, and retina to ameliorate such light-mediated oxidative damage. It appears, however, that such mechanisms are ill-matched to handle modern conditions: namely, poor diet and longer life-spans (and the degenerative diseases that accompany them). Hence, steps must be taken to protect the eye from the damaging effects of light. Preventative measures include minimizing actinic light exposure, providing exogenous filtering (e.g., through the use of protective lenses), and enhancing antioxidant defenses (e.g., through increased dietary intake of antioxidants). These strategies may yield long-term benefits in terms of reducing oxidative photodegradation of the ocular tissues.
Collapse
Affiliation(s)
- Billy R Hammond
- Vision Sciences Laboratory, University of Georgia, Athens, GA 30602-3013, USA.
| | - Bart A Johnson
- Johnson & Johnson Vision Care, Inc., 7500 Centurion Parkway, R&D 3rd Floor W3A, Jacksonville, FL 33256, USA
| | - Eric R George
- Johnson & Johnson Vision Care, Inc., 7500 Centurion Parkway, R&D 3rd Floor W3A, Jacksonville, FL 33256, USA.
| |
Collapse
|
11
|
Douglas RH, Jeffery G. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc Biol Sci 2014; 281:20132995. [PMID: 24552839 PMCID: PMC4027392 DOI: 10.1098/rspb.2013.2995] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although ultraviolet (UV) sensitivity is widespread among animals it is considered rare in mammals, being restricted to the few species that have a visual pigment maximally sensitive (λmax) below 400 nm. However, even animals without such a pigment will be UV-sensitive if they have ocular media that transmit these wavelengths, as all visual pigments absorb significant amounts of UV if the energy level is sufficient. Although it is known that lenses of diurnal sciurid rodents, tree shrews and primates prevent UV from reaching the retina, the degree of UV transmission by ocular media of most other mammals without a visual pigment with λmax in the UV is unknown. We examined lenses of 38 mammalian species from 25 families in nine orders and observed large diversity in the degree of short-wavelength transmission. All species whose lenses removed short wavelengths had retinae specialized for high spatial resolution and relatively high cone numbers, suggesting that UV removal is primarily linked to increased acuity. Other mammals, however, such as hedgehogs, dogs, cats, ferrets and okapis had lenses transmitting significant amounts of UVA (315-400 nm), suggesting that they will be UV-sensitive even without a specific UV visual pigment.
Collapse
Affiliation(s)
- R H Douglas
- Department of Optometry and Visual Science, City University London, , Northampton Square, London EC1V 0HB, UK, Institute of Ophthalmology, University College London, , 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
12
|
Behar-Cohen F, Baillet G, de Ayguavives T, Garcia PO, Krutmann J, Peña-García P, Reme C, Wolffsohn JS. Ultraviolet damage to the eye revisited: eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear. Clin Ophthalmol 2013; 8:87-104. [PMID: 24379652 PMCID: PMC3872277 DOI: 10.2147/opth.s46189] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers.
Collapse
Affiliation(s)
- Francine Behar-Cohen
- French Institute of Health and Medical Research, Team 17, Centre de Recherche des Cordeliers, France
| | - Gilles Baillet
- Research and Development Center, Essilor International, Saint Maur des Fossés, France
| | - Tito de Ayguavives
- Research and Development Center, Essilor International, Saint Maur des Fossés, France
| | | | - Jean Krutmann
- IUF Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Pablo Peña-García
- Department of Research, Fundacion Jorge Alio, Alicante, Spain
- Division of Ophthalmology, University Miguel Hernández, Alicante, Spain
| | - Charlotte Reme
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Switzerland
| | - James S Wolffsohn
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| |
Collapse
|
13
|
The role of SIRT1/AKT/ERK pathway in ultraviolet B induced damage on human retinal pigment epithelial cells. Toxicol In Vitro 2013; 27:1728-36. [PMID: 23673314 DOI: 10.1016/j.tiv.2013.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 11/23/2022]
Abstract
Ultraviolet (UV)-induced damage plays a major role in ocular diseases, such as cataracts and retinal degeneration. UVB may also cause retinal phototoxicity and photic retinopathy. In this study, we explored the effects of UVB on the cell cycle and the role of silent mating type information regulation 2 homolog 1 (SIRT1) in the UVB-induced damage. UVB dose-dependently suppressed the growth of retinal pigment epithelial (RPE) cells by activating the phosphatidylinositol 3-kinase (PI3K) pathway and triggering cell cycle arrest at the S phase. SIRT1, an NAD-dependent histone deacetylase, is involved in multiple biological processes, such as the stress response and the regulation of the cell cycle. However, its role in the effects of UVB on RPE cells is unclear. We showed that UVB down-regulates SIRT1 expression in a dose-dependent manner. Resveratrol, an SIRT1 activator, prevented the UVB-induced damage by inhibiting AKT and ERK phosphorylation. A specific PI3K inhibitor attenuated the UVB-induced ERK1/2 and p53 phosphorylation. Finally, UVB activated the PI3K/AKT/ERK pathway by reducing the expression of SIRT1 in ARPE-19 cells. Our study, therefore, illustrated the molecular mechanisms of UVB-induced phototoxicity and damage of RPE cells. SIRT1 and resveratrol may be significant regulators, protecting against UVB-induced injury.
Collapse
|
14
|
Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini JP, Enouf O, Garcia M, Picaud S, Attia D. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 2011; 30:239-57. [PMID: 21600300 DOI: 10.1016/j.preteyeres.2011.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 12/11/2022]
Abstract
Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.
Collapse
Affiliation(s)
- F Behar-Cohen
- Inserm UMRS 872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|