1
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
2
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Jia F, Sun MY, Zhang XJ, Zhou XZ. Total alkaloids of Sophora alopecuroides- and matrine-induced reactive oxygen species impair biofilm formation of Staphylococcus epidermidis and increase bacterial susceptibility to ciprofloxacin. CHINESE HERBAL MEDICINES 2020; 12:390-398. [PMID: 36120175 PMCID: PMC9476472 DOI: 10.1016/j.chmed.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022] Open
Abstract
Objective To investigate the mechanism by which total alkaloids of Sophora alopecuroides (TASA) and matrine (MT) impair biofilm to increase the susceptibility of Staphylococcus epidermidis (S. epidermidis) to ciprofloxacin. Methods The minimum biofilm inhibitory concentration (mBIC) was determined using a 2-fold dilution method. Structure of biofilm of S. epidermidis was examined by Confocal Laser Scanning Microscope (CLSM). The cellular reactive oxygen species (ROS) was determined using a DCFH-DA assay. The key factors related to the regulation of ROS were accessed using respective kits. Results TASA and MT were more beneficial to impair biofilm of S. epidermidis than ciprofloxacin (CIP) (P < 0.05). TASA and MT were not easily developed resistance to biofilm-producing S. epidermidis. The mBIC of CIP decreased by 2–6-fold following the treatment of sub-biofilm inhibitory concentration (sub-BIC) TASA and MT, whereas the mBIC of CIP increased by 2-fold following a treatment of sub-BIC CIP from the first to sixth generations. TASA and MT can improve the production of ROS in biofilm-producing S. epidermidis. The ROS content was decreased 23%−33% following the treatment of sub-mBIC CIP, whereas ROS content increased 7%−24% following treatment with TASA + CIP and MT + CIP combination from the first to sixth generations. Nitric oxide (NO) as a ROS, which was consistent with the previously confirmed relationship between ROS and drug resistance. Related regulatory factors-superoxide dismutase (SOD) and glutathione peroxidase (GSH) could synergistically maintain the redox balance in vivo. Conclusion TASA and MT enhanced reactive oxygen species to restore the susceptibility of S. epidermidis to ciprofloxacin.
Collapse
|
4
|
Paziani MH, Tonani L, de Menezes HD, Bachmann L, Wainwright M, Braga GÚL, von Zeska Kress MR. Antimicrobial photodynamic therapy with phenothiazinium photosensitizers in non-vertebrate model Galleria mellonella infected with Fusarium keratoplasticum and Fusarium moniliforme. Photodiagnosis Photodyn Ther 2018; 25:197-203. [PMID: 30586617 DOI: 10.1016/j.pdpdt.2018.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Fusarium keratoplasticum and Fusarium moniliforme are filamentous fungi common in the environment and cause mycosis in both animals and plants. Human infections include mycetoma, keratitis and onychomycosis, while deeper mycosis occurs in immunocompromised patients. Most of the Fusarium spp. are frequently resistant to treatment with currently used antifungals. The frequent occurrence of antifungal resistance has motivated the study of antimicrobial photodynamic therapy as an alternative treatment for fungal infections. Many studies have investigated the in vitro use of antimicrobial photodynamic therapy to kill fungi, but rarely in animal models of infection. Thus, here we employed the invertebrate wax moth Galleria mellonella to study the in vivo effects of antimicrobial photodynamic therapy with three different phenothiazinium photosensitizers, methylene blue, new methylene blue N and the pentacyclic S137 against infection with microconidia of Fusarium keratoplasticum and Fusarium moniliforme. The effect of antimicrobial photodynamic therapy using these photosensitizers and light-emitting diodes with an emission peak at 635 nm and an integrated irradiance from 570 to 670 nm of 9.8 mW cm-2 was investigated regarding the toxicity, fungal burden, larval survival and cellular immune response. The results from this model indicate that antimicrobial photodynamic therapy with methylene blue, new methylene blue N and S137 is efficient for the treatment of infection with F. keratoplasticum and F. moniliforme. The efficiency can be attributed to the fungal cell damage caused by antimicrobial photodynamic therapy which facilitates the action of the host immune response.
Collapse
Affiliation(s)
- Mario Henrique Paziani
- Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-903, Brazil
| | - Ludmilla Tonani
- Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-903, Brazil
| | - Henrique Dantas de Menezes
- Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-903, Brazil
| | - Luciano Bachmann
- Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Gilberto Úbida Leite Braga
- Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-903, Brazil
| | - Marcia Regina von Zeska Kress
- Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-903, Brazil.
| |
Collapse
|
5
|
Permeability of DOPC bilayers under photoinduced oxidation: Sensitivity to photosensitizer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2366-2373. [DOI: 10.1016/j.bbamem.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/16/2023]
|
6
|
In vitro susceptibilities of Neoscytalidium spp. sequence types to antifungal agents and antimicrobial photodynamic treatment with phenothiazinium photosensitizers. Fungal Biol 2017; 122:436-448. [PMID: 29801787 DOI: 10.1016/j.funbio.2017.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022]
Abstract
Neoscytalidium spp. are ascomycetous fungi consisting of pigmented and hyaline varieties both able to cause skin and nail infection. Their color-based identification is inaccurate and may compromise the outcome of the studies with these fungi. The aim of this study was to genotype 32 isolates morphologically identified as Neoscytalidiumdimidiatum or N. dimidiatum var. hyalinum by multilocus sequence typing (MLST), differentiate the two varieties by their sequence types, evaluate their susceptibility to seven commercial antifungal drugs [amphotericin B (AMB), voriconazole (VOR), terbinafine (TER), 5-flucytosine (5FC), ketoconazole (KET), fluconazole (FLU), and caspofungin (CAS)], and also to the antimicrobial photodynamic treatment (APDT) with the phenothiazinium photosensitizers (PS) methylene blue (MB), new methylene blue (NMBN), toluidine blue O (TBO) and the pentacyclic derivative S137. The efficacy of each PS was determined, initially, based on its minimal inhibitory concentration (MIC). Additionally, the APDT effects with each PS on the survival of ungerminated and germinated arthroconidia of both varieties were evaluated. Seven loci of Neoscytalidium spp. were sequenced on MLST revealing eight polymorphic sites and six sequence types (ST). All N. dimidiatum var. hyalinum isolates were clustered in a single ST. AMB, VOR and TER were the most effective antifungal agents against both varieties. The hyaline variety isolates were much less tolerant to the azoles than the isolates of the pigmented variety. APDT with S137 showed the lowest MIC for all the isolates of both varieties. APDT with all the PS killed both ungerminated and germinated arthroconidia of both varieties reducing the survival up to 5 logs. Isolates of the hyaline variety were also less tolerant to APDT. APDT with the four PS also increased the plasma membrane permeability of arthroconidia of both varieties but only NMBN and S137 caused peroxidation of the membrane lipids.
Collapse
|
7
|
Delport A, Harvey BH, Petzer A, Petzer JP. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol Appl Pharmacol 2017; 325:1-8. [DOI: 10.1016/j.taap.2017.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
|
8
|
Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:1-12. [DOI: 10.1016/j.jphotobiol.2016.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
|
9
|
Kasimova KR, Sadasivam M, Landi G, Sarna T, Hamblin MR. Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion. Photochem Photobiol Sci 2015; 13:1541-8. [PMID: 25177833 DOI: 10.1039/c4pp00021h] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Antimicrobial photodynamic inactivation (APDI) using phenothiazinium dyes is mediated by reactive oxygen species consisting of a combination of singlet oxygen (quenched by azide), hydroxyl radicals and other reactive oxygen species. We recently showed that addition of sodium azide paradoxically potentiated APDI of Gram-positive and Gram-negative bacteria using methylene blue as the photosensitizer, and this was due to electron transfer to the dye triplet state from azide anion, producing azidyl radical. Here we compare this effect using six different homologous phenothiazinium dyes: methylene blue, toluidine blue O, new methylene blue, dimethylmethylene blue, azure A, and azure B. We found both significant potentiation (up to 2 logs) and also significant inhibition (>3 logs) of killing by adding 10 mM azide depending on Gram classification, washing the dye from the cells, and dye structure. Killing of E. coli was potentiated with all 6 dyes after a wash, while S. aureus killing was only potentiated by MB and TBO with a wash and DMMB with no wash. More lipophilic dyes (higher log P value, such as DMMB) were more likely to show potentiation. We conclude that the Type I photochemical mechanism (potentiation with azide) likely depends on the microenvironment, i.e. higher binding of dye to bacteria. Bacterial dye-binding is thought to be higher with Gram-negative compared to Gram-positive bacteria, when unbound dye has been washed away, and with more lipophilic dyes.
Collapse
Affiliation(s)
- Kamola R Kasimova
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
10
|
Li N, Gao C, Peng X, Wang W, Luo M, Fu YJ, Zu YG. Aspidin BB, a phloroglucinol derivative, exerts its antibacterial activity against Staphylococcus aureus by inducing the generation of reactive oxygen species. Res Microbiol 2014; 165:263-72. [DOI: 10.1016/j.resmic.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/10/2014] [Indexed: 01/11/2023]
|
11
|
Bacellar IOL, Pavani C, Sales EM, Itri R, Wainwright M, Baptista MS. Membrane Damage Efficiency of Phenothiazinium Photosensitizers. Photochem Photobiol 2014; 90:801-13. [DOI: 10.1111/php.12264] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/21/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Isabel O. L. Bacellar
- Departamento de Bioquímica; Instituto de Química; Universidade de São Paulo; São Paulo Brasil
| | - Christiane Pavani
- Departamento de Bioquímica; Instituto de Química; Universidade de São Paulo; São Paulo Brasil
| | - Elisa M. Sales
- Departamento de Física Aplicada; Instituto de Física; Universidade de São Paulo; São Paulo Brasil
- Instituto de Pesquisas Tecnológicas do Estado de São Paulo; São Paulo Brasil
| | - Rosangela Itri
- Departamento de Física Aplicada; Instituto de Física; Universidade de São Paulo; São Paulo Brasil
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool UK
| | - Mauricio S. Baptista
- Departamento de Bioquímica; Instituto de Química; Universidade de São Paulo; São Paulo Brasil
| |
Collapse
|
12
|
de Menezes HD, Rodrigues GB, Teixeira SDP, Massola NS, Bachmann L, Wainwright M, Braga GUL. In vitro photodynamic inactivation of plant-pathogenic fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with Novel Phenothiazinium photosensitizers. Appl Environ Microbiol 2014; 80:1623-32. [PMID: 24362436 PMCID: PMC3957600 DOI: 10.1128/aem.02788-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/18/2013] [Indexed: 11/20/2022] Open
Abstract
The increasing tolerance to currently used fungicides in both clinical and agricultural areas is of great concern. The nonconventional light-based approach of antimicrobial photodynamic treatment (APDT) is a promising alternative to conventional fungicides. We evaluated the effects of APDT with four phenothiazinium derivatives (methylene blue [MB], new methylene blue N [NMBN], toluidine blue O [TBO], and the novel pentacyclic phenothiazinium photosensitizer [PS] S137) on conidia of three fungal species (Colletotrichum acutatum, Colletotrichum gloeosporioides, and Aspergillus nidulans). The efficacy of APDT with each PS was determined, initially, based on photosensitizer MICs. Additionally, the effects of APDT with two selected PSs (NMBN and S137) on survival of conidia were evaluated. The subcellular localization of the PS in C. acutatum conidia was determined. The effects of photodynamic treatments on leaves of the plant host Citrus sinensis were also investigated. APDT with S137 showed the lowest MIC. MICs for S137 were 5 μM for the three fungal species when a fluence of 25 J cm(-2) was used. APDT with NMBN (50 μM) and S137 (10 μM) resulted in a reduction in the survival of the conidia of all species of approximately 5 logs with fluences of ≥15 J cm(-2). Washing of the conidia before light exposure did not prevent photodynamic inactivation. Both NMBN and S137 accumulated in cytoplasmic structures, such as lipid bodies, of C. acutatum conidia. No damage to orange tree leaves was observed after APDT.
Collapse
Affiliation(s)
- Henrique D. de Menezes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gabriela B. Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Simone de Pádua Teixeira
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nelson S. Massola
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Luciano Bachmann
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gilberto U. L. Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Research Support Center in Natural and Synthetic Products, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
13
|
Cho S, Kang DK, Sim S, Geier F, Kim JY, Niu X, Edel JB, Chang SI, Wootton RCR, Elvira KS, deMello AJ. Droplet-Based Microfluidic Platform for High-Throughput, Multi-Parameter Screening of Photosensitizer Activity. Anal Chem 2013; 85:8866-72. [DOI: 10.1021/ac4022067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soongwon Cho
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Dong-Ku Kang
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Steven Sim
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Florian Geier
- Department
of Surgery and Cancer, Faculty of Medicine, South Kensington
Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jin-Young Kim
- Department of Bioengineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Xize Niu
- Engineering and the Environment, and Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Soo-Ik Chang
- Department
of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Robert C. R. Wootton
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Katherine S. Elvira
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Susceptibilities of the dermatophytes Trichophyton mentagrophytes and T. rubrum microconidia to photodynamic antimicrobial chemotherapy with novel phenothiazinium photosensitizers and red light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 116:89-94. [DOI: 10.1016/j.jphotobiol.2012.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022]
|
15
|
Hamblin MR. Antimicrobial photodynamic therapy and photodynamic inactivation, or killing bugs with dyes and light--a symposium-in-print. Photochem Photobiol 2012; 88:496-8. [PMID: 22497420 DOI: 10.1111/j.1751-1097.2012.01139.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In antimicrobial photodynamic therapy, the photosensitizer (PS) in its ground singlet state absorbs light to give the excited singlet state that can transition to the long-lived triplet state. This PS triplet may undergo energy transfer (Type 2) or electron transfer (Type 1) to oxygen to form reactive oxygen species (singlet oxygen and/or hydroxyl radicals) that can kill both Gram-positive and Gram-negative bacteria and fungi. Infections in animal models can also be treated.
Collapse
|