Ercan E, Bagla AG, Aksoy A, Gacar G, Unal ZS, Asgun HF, Karaoz E. In vitro protection of adipose tissue-derived mesenchymal stem cells by erythropoietin.
Acta Histochem 2014;
116:117-25. [PMID:
24011510 DOI:
10.1016/j.acthis.2013.06.007]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/08/2023]
Abstract
Mobilization of stem cells and their differentiation into cardiomyocytes are known to have protective effects after myocardial infarction. The integrity of transplanted mesenchymal stem cells for cardiac regeneration is dependent on cell-cell or cell-matrix interaction, which is adversely affected by reactive oxygen species in an ischemic environment. Treatment with erythropoietin was shown to protect human adipose tissue derived mesenchymal stem cells in an ischemic injury in vitro model. The analyses indicated that expression of erythropoietin receptors played a pivotal role in erythropoietin mediated cell survival. In this study, the anti-apoptotic effect of erythropoietin on stem cells was analyzed in apoptosis-induced human mesenchymal stem cells. Apoptosis was induced in cultured adult human adipose tissue derived mesenchymal stem cells by hydrogen peroxide. A group of cultured cells was also treated with recombinant human erythropoietin in a concentration of 50 ng mL(-1). The degree of apoptosis was analyzed by flow-cytometry and immunohistochemical staining for Caspase 3. The average percentages of apoptotic cells were significantly higher in H2O2-induced stem cells than in cells co-cultured with erythropoietin (63.03 ± 4.96% vs 29 ± 3.41%, p<0.01). We conclude that preconditioning with erythropoietin suppresses apoptosis of mesenchymal stem cells and enhances their survival.
Collapse