1
|
Zou S, Li X, Huang Y, Zhang B, Tang H, Xue Y, Zheng Y. Properties and biotechnological applications of microbial deacetylase. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12613-1. [PMID: 37326683 DOI: 10.1007/s00253-023-12613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Deacetylases, a class of enzymes that can catalyze the hydrolysis of acetylated substrates to remove the acetyl group, used in producing various products with high qualities, are one of the most influential industrial enzymes. These enzymes are highly specific, non-toxic, sustainable, and eco-friendly biocatalysts. Deacetylases and deacetylated compounds have been widely applicated in pharmaceuticals, medicine, food, and the environment. This review synthetically summarizes deacetylases' sources, characterizations, classifications, and applications. Moreover, the typical structural characteristics of deacetylases from different microbial sources are summarized. We also reviewed the deacetylase-catalyzed reactions for producing various deacetylated compounds, such as chitosan-oligosaccharide (COS), mycothiol, 7-aminocephalosporanic acid (7-ACA), glucosamines, amino acids, and polyamines. It is aimed to expound on the advantages and challenges of deacetylases in industrial applications. Moreover, it also serves perspectives on obtaining promising and innovative biocatalysts for enzymatic deacetylation. KEYPOINTS: • The fundamental properties of microbial deacetylases of various microorganisms are presented. • The biochemical characterizations, structures, and catalyzation mechanisms of microbial deacetylases are summarized. • The applications of microbial deacetylases in food, pharmaceutical, medicine, and the environment were discussed.
Collapse
Affiliation(s)
- Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yinfeng Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bing Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
2
|
Embaby AM, Mahmoud HE. Recombinant acetylxylan esterase of Halalkalibacterium halodurans NAH-Egypt: molecular and biochemical study. AMB Express 2022; 12:135. [DOI: 10.1186/s13568-022-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractAcetylxylan esterase plays a crucial role in xylan hydrolysis as the acetyl side-groups restrict endoxylanase action by stearic hindrance. In this study, an acetylxylan esterase (AXE-HAS10: 960 bp & 319 a.a) putative ORF from Halalkalibacterium halodurans NAH-Egypt was extensively studied through heterologous overexpression in Escherichia coli, biochemical characterization, and structural modeling. The AXE-HAS10 tertiary structure was predicted by the Local Meta Threading Server. AXE-HAS10 belongs to the carbohydrate esterase Family 7. Purified to homogeneity AXE-HAS10 showed specific activity (36.99 U/mg), fold purification (11.42), and molecular mass (41.39 kDa). AXE-HAS10 showed optimal pH (8.5) and temperature (40 oC). After 15 h of incubation at pH 7.0–9.0, AXE-HAS10 maintained 100% activity. After 120 min at 35 and 40 oC, the retained activity was 80 and 50%, respectively. At 10 mM Mn2+, Fe3+, K+, and Ca2+ after 30 min, retained activity was 329 ± 15, 212 ± 5.2, 123 ± 1.4, and 120 ± 3.0%, respectively. After 30 min of preincubation with triton x-100, SDS, and CTAB at 0.1% (v/v), the retained activity was 150 ± 19, 88 ± 4, and 82 ± 7%, respectively. At 6.0 M NaCl after 30 min, retained activity was 58%. A 1.44-fold enhancement of beechwood xylan hydrolysis was achieved by AXE-HAS10 and Penicillium chrysogenum DSM105774 β-xylanase concurrently. Present data underpins AXE-HAS10 as a promising AXE for industrial exploitation.
Collapse
|
3
|
Nguyen DL, Hwang J, Kim EJ, Lee JH, Han SJ. Production and Characterization of a Recombinant Cold-Active Acetyl Xylan Esterase from Psychrophilic Paenibacillus sp. R4 Strain. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Madubuike H, Ferry N. Characterisation of a Novel Acetyl Xylan Esterase (BaAXE) Screened from the Gut Microbiota of the Common Black Slug ( Arion ater). Molecules 2022; 27:2999. [PMID: 35566348 PMCID: PMC9104356 DOI: 10.3390/molecules27092999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Acetyl xylan esterases (AXEs) are enzymes capable of hydrolysing the acetyl bonds in acetylated xylan, allowing for enhanced activity of backbone-depolymerizing enzymes. Bioprospecting novel AXE is essential in designing enzyme cocktails with desired characteristics targeting the complete breakdown of lignocellulose. In this article, we report the characterisation of a novel AXE identified as Gene_id_40363 in the metagenomic library analysed from the gut microbiota of the common black slug. The conserved domain description was identified with an NCBI BLASTp search using the translated nucleotide sequence as a query. The activity of the recombinant enzyme was tested on various synthetic substrates and acetylated substrates. The protein sequence matched the conserved domain described as putative hydrolase and aligned closely to an uncharacterized esterase from Buttiauxella agrestis, hence the designation as BaAXE. BaAXE showed low sequence similarity among characterized CE family proteins with an available 3D structure. BaAXE was active on 4-nitrophenyl acetate, reporting a specific activity of 78.12 U/mg and a Km value of 0.43 mM. The enzyme showed optimal activity at 40 °C and pH 8 and showed high thermal stability, retaining over 40% activity after 2 h of incubation from 40 °C to 100 °C. BaAXE hydrolysed acetyl bonds, releasing acetic acid from acetylated xylan and β-D-glucose pentaacetate. BaAXE has great potential for biotechnological applications harnessing its unique characteristics. In addition, this proves the possibility of bioprospecting novel enzymes from understudied environments.
Collapse
Affiliation(s)
- Henry Madubuike
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
5
|
Jia W, Li H, Wang Q, Zheng K, Lin H, Li X, Huang J, Xu L, Dong W, Shu Z. Screening of perhydrolases to optimize glucose oxidase-perhydrolase-in situ chemical oxidation cascade reaction system and its application in melanin decolorization. J Biotechnol 2021; 328:106-114. [PMID: 33485863 DOI: 10.1016/j.jbiotec.2021.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
A novel glucose oxidase (GOD)-perhydrolase-in situ chemical oxidation (ISCO) cascade reaction system was designed, optimized, and verified the operation feasibility in this research. Among the determined four perhydrolases, acyltransferase from Mycobacterium smegmatis (MsAcT) displayed the highest specific activity for perhydrolysis reaction (76.4 U/mg) and the lowest Km value to hydrogen peroxide (13.9 mmol/L). GOD-MsAcT cascade reaction system also displayed high catalytic efficiency. Under the optimal parameters (50:1 activity unit ratio of GOD to MsAcT, pH 8.0, 50 mmol/L of β-d-glucose, and 15 mmol/L of glyceryl triacetate), the melanin decolorization rate using GOD-MsAcT-ISCO cascade reaction system reached 86.8 %. Kinetics of GOD-MsAcT-ISCO cascade reaction system for melanin decolorization fitted the kinetic model of Boltzmann sigmoid. As a substitutive skin whitening technology, GOD-MsAcT-ISCO cascade reaction system displayed an excellent application prospect.
Collapse
Affiliation(s)
- Wenjing Jia
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Huan Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Qian Wang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Kaixuan Zheng
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou, 350117, China
| | - Hong Lin
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Xin Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Jianzhong Huang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China.
| | - Linting Xu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
6
|
Kim MJ, Jang MU, Nam GH, Shin H, Song JR, Kim TJ. Functional Expression and Characterization of Acetyl Xylan Esterases CE Family 7 from Lactobacillus antri and Bacillus halodurans. J Microbiol Biotechnol 2020; 30:155-162. [PMID: 31986559 PMCID: PMC9728288 DOI: 10.4014/jmb.2001.01004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acetyl xylan esterase (AXE; E.C. 3.1.1.72) is one of the accessory enzymes for xylan degradation, which can remove the terminal acetate residues from xylan polymers. In this study, two genes encoding putative AXEs (LaAXE and BhAXE) were cloned from Lactobacillus antri DSM 16041 and Bacillus halodurans C-125, and constitutively expressed in Escherichia coli. They possess considerable activities towards various substrates such as p-nitrophenyl acetate, 4-methylumbelliferyl acetate, glucose pentaacetate, and 7-amino cephalosporanic acid. LaAXE and BhAXE showed the highest activities at pH 7.0 and 8.0 at 50°C, respectively. These enzymes are AXE members of carbohydrate esterase (CE) family 7 with the cephalosporine-C deacetylase activity for the production of antibiotics precursors. The simultaneous treatment of LaAXE with Thermotoga neapolitana β-xylanase showed 1.44-fold higher synergistic degradation of beechwood xylan than the single treatment of xylanase, whereas BhAXE showed no significant synergism. It was suggested that LaAXE can deacetylate beechwood xylan and enhance the successive accessibility of xylanase towards the resulting substrates. The novel LaAXE originated from a lactic acid bacterium will be utilized for the enzymatic production of D-xylose and xylooligosaccharides.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Myoung-Uoon Jang
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gyeong-Hwa Nam
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Heeji Shin
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong-Rok Song
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Tae-Jip Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea,Corresponding author Phone: +82-43-261-3354 Fax: +82-43-271-4412 E-mail:
| |
Collapse
|
7
|
Crystal structure and functional characterization of a cold-active acetyl xylan esterase (PbAcE) from psychrophilic soil microbe Paenibacillus sp. PLoS One 2018; 13:e0206260. [PMID: 30379876 PMCID: PMC6209228 DOI: 10.1371/journal.pone.0206260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Cold-active acetyl xylan esterases allow for reduced bioreactor heating costs in bioenergy production. Here, we isolated and characterized a cold-active acetyl xylan esterase (PbAcE) from the psychrophilic soil microbe Paenibacillus sp. R4. The enzyme hydrolyzes glucose penta-acetate and xylan acetate, reversibly producing acetyl xylan from xylan, and it shows higher activity at 4°C than at 25°C. We solved the crystal structure of PbAcE at 2.1-Å resolution to investigate its active site and the reason for its low-temperature activity. Structural analysis showed that PbAcE forms a hexamer with a central substrate binding tunnel, and the inter-subunit interactions are relatively weak compared with those of its mesophilic and thermophilic homologs. PbAcE also has a shorter loop and different residue composition in the β4–α3 and β5–α4 regions near the substrate binding site. Flexible subunit movements and different active site loop conformations may enable the strong low-temperature activity and broad substrate specificity of PbAcE. In addition, PbAcE was found to have strong activity against antibiotic compound substrates, such as cefotaxime and 7-amino cephalosporanic acid (7-ACA). In conclusion, the PbAcE structure and our biochemical results provide the first example of a cold-active acetyl xylan esterase and a starting template for structure-based protein engineering.
Collapse
|
8
|
Adesioye FA, Makhalanyane TP, Vikram S, Sewell BT, Schubert WD, Cowan DA. Structural Characterization and Directed Evolution of a Novel Acetyl Xylan Esterase Reveals Thermostability Determinants of the Carbohydrate Esterase 7 Family. Appl Environ Microbiol 2018; 84:e02695-17. [PMID: 29453256 PMCID: PMC5881061 DOI: 10.1128/aem.02695-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/04/2023] Open
Abstract
A hot desert hypolith metagenomic DNA sequence data set was screened in silico for genes annotated as acetyl xylan esterases (AcXEs). One of the genes identified encoded an ∼36-kDa protein (Axe1NaM1). The synthesized gene was cloned and expressed, and the resulting protein was purified. NaM1 was optimally active at pH 8.5 and 30°C and functionally stable at salt concentrations of up to 5 M. The specific activity and catalytic efficiency were 488.9 U mg-1 and 3.26 × 106 M-1 s-1, respectively. The crystal structure of wild-type NaM1 was solved at a resolution of 2.03 Å, and a comparison with the structures and models of more thermostable carbohydrate esterase 7 (CE7) family enzymes and variants of NaM1 from a directed evolution experiment suggests that reduced side-chain volume of protein core residues is relevant to the thermal stability of NaM1. Surprisingly, a single point mutation (N96S) not only resulted in a simultaneous improvement in thermal stability and catalytic efficiency but also increased the acyl moiety substrate range of NaM1.IMPORTANCE AcXEs belong to nine carbohydrate esterase families (CE1 to CE7, CE12, and CE16), of which CE7 enzymes possess a unique and narrow specificity for acetylated substrates. All structurally characterized members of this family are moderately to highly thermostable. The crystal structure of a novel, mesophilic CE7 AcXE (Axe1NaM1), from a soil metagenome, provides a basis for comparisons with thermostable CE7 enzymes. Using error-prone PCR and site-directed mutagenesis, we enhanced both the stability and activity of the mesophilic AcXE. With comparative structural analyses, we have also identified possible thermal stability determinants. These are valuable for understanding the thermal stability of enzymes within this family and as a guide for future protein engineering of CE7 and other α/β hydrolase enzymes.
Collapse
Affiliation(s)
- Fiyinfoluwa A Adesioye
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Bryan T Sewell
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Singh MK, Shivakumaraswamy S, Gummadi SN, Manoj N. Role of an N-terminal extension in stability and catalytic activity of a hyperthermostable α/β hydrolase fold esterase. Protein Eng Des Sel 2017; 30:559-570. [PMID: 28967962 DOI: 10.1093/protein/gzx049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
The carbohydrate esterase family 7 (CE7) enzymes catalyze the deacetylation of acetyl esters of a broad range of alcohols and is unique in its activity towards cephalosporin C. The CE7 fold contains a conserved N-terminal extension that distinguishes it from the canonical α/β hydrolase fold. The hexameric quaternary structure indicates that the N-terminus may affect activity and specificity by controlling access of substrates to the buried active sites via an entrance tunnel. In this context, we characterized the catalytic parameters, conformation and thermal stability of two truncation variants lacking four and ten residues of the N-terminal region of the hyperthermostable Thermotoga maritima CE7 acetyl esterase (TmAcE). The truncations did not affect the secondary structure or the fold but modulated the oligomerization dynamics. A modest increase was observed in substrate specificity for acetylated xylose compared with acetylated glucose. A drastic reduction of ~30-40°C in the optimum temperature for activity of the variants indicated lower thermal stability. The loss of hyperthermostability appears to be an indirect effect associated with an increase in the conformational flexibility of an otherwise rigid neighboring loop containing a catalytic triad residue. The results suggest that the N-terminal extension was evolutionarily selected to preserve the stability of the enzyme.
Collapse
Affiliation(s)
- Mrityunjay K Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Santosh Shivakumaraswamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Zarafeta D, Szabo Z, Moschidi D, Phan H, Chrysina ED, Peng X, Ingham CJ, Kolisis FN, Skretas G. EstDZ3: A New Esterolytic Enzyme Exhibiting Remarkable Thermostability. Front Microbiol 2016; 7:1779. [PMID: 27899916 PMCID: PMC5110521 DOI: 10.3389/fmicb.2016.01779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
Lipolytic enzymes that retain high levels of catalytic activity when exposed to a variety of denaturing conditions are of high importance for a number of biotechnological applications. In this study, we aimed to identify new lipolytic enzymes, which are highly resistant to prolonged exposure to elevated temperatures. To achieve this, we searched for genes encoding for such proteins in the genomes of a microbial consortium residing in a hot spring located in China. After performing functional genomic screening on a bacterium of the genus Dictyoglomus, which was isolated from this hot spring following in situ enrichment, we identified a new esterolytic enzyme, termed EstDZ3. Detailed biochemical characterization of the recombinant enzyme, revealed that it constitutes a slightly alkalophilic and highly active esterase against esters of fatty acids with short to medium chain lengths. Importantly, EstDZ3 exhibits remarkable thermostability, as it retains high levels of catalytic activity after exposure to temperatures as high as 95°C for several hours. Furthermore, it exhibits very good stability against exposure to high concentrations of a variety of organic solvents. Interestingly, EstDZ3 was found to have very little similarity to previously characterized esterolytic enzymes. Computational modeling of the three-dimensional structure of this new enzyme predicted that it exhibits a typical α/β hydrolase fold that seems to include a “subdomain insertion”, which is similar to the one present in its closest homolog of known function and structure, the cinnamoyl esterase Lj0536 from Lactobacillus johnsonii. As it was found in the case of Lj0536, this structural feature is expected to be an important determinant of the catalytic properties of EstDZ3. The high levels of esterolytic activity of EstDZ3, combined with its remarkable thermostability and good stability against a range of organic solvents and other denaturing agents, render this new enzyme a candidate biocatalyst for high-temperature biotechnological applications.
Collapse
Affiliation(s)
- Dimitra Zarafeta
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research FoundationAthens, Greece; Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of AthensAthens, Greece
| | | | - Danai Moschidi
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens Athens, Greece
| | - Hien Phan
- Danish Archaea Centre, Department of Biology, Copenhagen University Copenhagen, Denmark
| | - Evangelia D Chrysina
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation Athens, Greece
| | - Xu Peng
- Danish Archaea Centre, Department of Biology, Copenhagen University Copenhagen, Denmark
| | | | - Fragiskos N Kolisis
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens Athens, Greece
| | - Georgios Skretas
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation Athens, Greece
| |
Collapse
|
11
|
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 2016; 93-94:79-91. [DOI: 10.1016/j.enzmictec.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
|
12
|
Kwon M, Song J, Park HS, Park H, Chang J. Characterization of Heterologously Expressed Acetyl Xylan Esterase1 Isolated from the Anaerobic Rumen Fungus Neocallimastix frontalis PMA02. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1576-1584. [PMID: 27383808 PMCID: PMC5088377 DOI: 10.5713/ajas.16.0336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/29/2016] [Accepted: 06/09/2016] [Indexed: 11/27/2022]
Abstract
Acetyl xylan esterase (AXE), which hydrolyzes the ester linkages of the naturally acetylated xylan and thus known to have an important role for hemicellulose degradation, was isolated from the anaerobic rumen fungus Neocallimastix frontatlis PMA02, heterologously expressed in Escherichi coli (E.coli) and characterized. The full-length cDNA encoding NfAXE1 was 1,494 bp, of which 978 bp constituted an open reading frame. The estimated molecular weight of NfAXE1 was 36.5 kDa with 326 amino acid residues, and the calculated isoelectric point was 4.54. The secondary protein structure was predicted to consist of nine α-helixes and 12 β-strands. The enzyme expressed in E.coli had the highest activity at 40°C and pH 8. The purified recombinant NfAXE1 had a specific activity of 100.1 U/mg when p-nitrophenyl acetate (p-NA) was used as a substrate at 40°C, optimum temperature. The amount of liberated acetic acids were the highest and the lowest when p-NA and acetylated birchwood xylan were used as substrates, respectively. The amount of xylose released from acetylated birchwod xylan was increased by 1.4 fold when NfAXE1 was mixed with xylanase in a reaction cocktail, implying a synergistic effect of NfAXE1 with xylanase on hemicellulose degradation.
Collapse
Affiliation(s)
- Mi Kwon
- InfoBoss Incorporation, Seoul 07766, Korea.,Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Jaeyong Song
- Department of Agricultural Science, Korea National Open University, Seoul 03087, Korea.,Department of Animal Sciences, Kyungpook National University, Sangju 37224, Korea
| | | | - Hyunjin Park
- Department of Agricultural Science, Korea National Open University, Seoul 03087, Korea
| | - Jongsoo Chang
- Department of Agricultural Science, Korea National Open University, Seoul 03087, Korea
| |
Collapse
|
13
|
An extended loop in CE7 carbohydrate esterase family is dispensable for oligomerization but required for activity and thermostability. J Struct Biol 2016; 194:434-45. [DOI: 10.1016/j.jsb.2016.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/20/2022]
|
14
|
Multiple nucleophilic elbows leading to multiple active sites in a single module esterase from Sorangium cellulosum. J Struct Biol 2015; 190:314-27. [DOI: 10.1016/j.jsb.2015.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/25/2015] [Accepted: 04/10/2015] [Indexed: 11/17/2022]
|
15
|
Hyperthermophilic aldolases as biocatalyst for C–C bond formation: rhamnulose 1-phosphate aldolase from Thermotoga maritima. Appl Microbiol Biotechnol 2014; 99:3057-68. [DOI: 10.1007/s00253-014-6123-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
|
16
|
Expression and characterization of a thermostable acetylxylan esterase from Caldanaerobacter subterraneus subsp. tengcongensis involved in the degradation of insoluble cellulose acetate. Biosci Biotechnol Biochem 2013; 77:2495-8. [PMID: 24317066 DOI: 10.1271/bbb.130568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A thermostable acetylxylan esterase gene, TTE0866, which catalyzes the deacetylation of cellulose acetate, was cloned from the genome of Caldanaerobacter subterraneus subsp. tengcongensis. The pH and temperature optima were 8.0 and 60 °C. The esterase was inhibited by phenylmethylsulfonyl fluoride. A mixture of the esterase and cellulolytic enzymes efficiently degraded insoluble cellulose acetate with a higher degree of substitution.
Collapse
|
17
|
Filippova EV, Weston LA, Kuhn ML, Geissler B, Gehring AM, Armoush N, Adkins CT, Minasov G, Dubrovska I, Shuvalova L, Winsor JR, Lavis LD, Satchell KJF, Becker DP, Anderson WF, Johnson RJ. Large scale structural rearrangement of a serine hydrolase from Francisella tularensis facilitates catalysis. J Biol Chem 2013; 288:10522-35. [PMID: 23430251 DOI: 10.1074/jbc.m112.446625] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tularemia is a deadly, febrile disease caused by infection by the gram-negative bacterium, Francisella tularensis. Members of the ubiquitous serine hydrolase protein family are among current targets to treat diverse bacterial infections. Herein we present a structural and functional study of a novel bacterial carboxylesterase (FTT258) from F. tularensis, a homologue of human acyl protein thioesterase (hAPT1). The structure of FTT258 has been determined in multiple forms, and unexpectedly large conformational changes of a peripheral flexible loop occur in the presence of a mechanistic cyclobutanone ligand. The concomitant changes in this hydrophobic loop and the newly exposed hydrophobic substrate binding pocket suggest that the observed structural changes are essential to the biological function and catalytic activity of FTT258. Using diverse substrate libraries, site-directed mutagenesis, and liposome binding assays, we determined the importance of these structural changes to the catalytic activity and membrane binding activity of FTT258. Residues within the newly exposed hydrophobic binding pocket and within the peripheral flexible loop proved essential to the hydrolytic activity of FTT258, indicating that structural rearrangement is required for catalytic activity. Both FTT258 and hAPT1 also showed significant association with liposomes designed to mimic bacterial or human membranes, respectively, even though similar structural rearrangements for hAPT1 have not been reported. The necessity for acyl protein thioesterases to have maximal catalytic activity near the membrane surface suggests that these conformational changes in the protein may dually regulate catalytic activity and membrane association in bacterial and human homologues.
Collapse
Affiliation(s)
- Ekaterina V Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tao W, Shengxue F, Duobin M, Xuan Y, Congcong D, Xihua W. Characterization of a new thermophilic and acid tolerant esterase from Thermotoga maritima capable of hydrolytic resolution of racemic ketoprofen ethyl ester. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
|
20
|
Hedge MK, Gehring AM, Adkins CT, Weston LA, Lavis LD, Johnson RJ. The structural basis for the narrow substrate specificity of an acetyl esterase from Thermotoga maritima. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1024-30. [DOI: 10.1016/j.bbapap.2012.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/09/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|