1
|
Nagabhyru P, Dinkins RD, Schardl CL. Transcriptome analysis of Epichloë strains in tall fescue in response to drought stress. Mycologia 2022; 114:697-712. [PMID: 35671366 DOI: 10.1080/00275514.2022.2060008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epichloë coenophiala, a systemic fungal symbiont (endophyte) of tall fescue (Lolium arundinaceum), has been documented to confer to this grass better persistence than plants lacking the endophyte, especially under stress conditions such as drought. The response, if any, of the endophyte to imposition of stress on the host plant has not been characterized previously. Therefore, we investigated effects on gene expression by E. coenophiala and a related endophyte when plant-endophyte symbiota were subjected to acute water-deficit stress. Plants harboring different endophyte strains were grown in sand in the greenhouse, then half were deprived of water for 48 h and the other half were watered controls. RNA was isolated from different plant tissues, and mRNA sequencing (RNA-seq) was conducted to identify genes that were differentially expressed comparing stress treatment with control. We compared two different plants harboring the common toxic E. coenophiala strain (CTE) and two non-ergot-alkaloid-producing Epichloë strains in tall fescue pseudostems, and in a second experiment we compared responses of E. coenophiala CTE in plant pseudostem and crown tissues. The endophytes responded to the stress with increased expression of genes involved in oxidative stress response, oxygen radical detoxification, C-compound carbohydrate metabolism, heat shock, and cellular transport pathways. The magnitude of fungal gene responses during stress varied among plant-endophyte symbiota. Responses in pseudostems and crowns involved some common pathways as well as some tissue-specific pathways. The fungal response to water-deficit stress involved gene expression changes in similar pathways that have been documented for plant stress responses, indicating that Epichloë spp. and their host plants either coordinate stress responses or separately activate similar stress response mechanisms that work together for mutual protection.
Collapse
Affiliation(s)
- Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Randy D Dinkins
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, Kentucky 40546
| | | |
Collapse
|
2
|
Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Int J Mol Sci 2021; 22:10529. [PMID: 34638870 PMCID: PMC8509026 DOI: 10.3390/ijms221910529] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Collapse
Affiliation(s)
- Qudsia Saeed
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jiří Kučerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road, Lahore 54000, Pakistan;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Munaza Naseem
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
- Agricultural Research, Ltd., Zahradni 400/1, 664 41 Troubsko, Czech Republic
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Adnan Mustafa
- Biology Center CAS, SoWa RI, Na Sadkach 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
3
|
Ueno AC, Gundel PE, Molina-Montenegro MA, Ramos P, Ghersa CM, Martínez-Ghersa MA. Getting ready for the ozone battle: Vertically transmitted fungal endophytes have transgenerational positive effects in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2716-2728. [PMID: 33721328 DOI: 10.1111/pce.14047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Ground-level ozone is a global air pollutant with high toxicity and represents a threat to plants and microorganisms. Although beneficial microorganisms can improve host performance, their role in connecting environmentally induced maternal plant phenotypes to progeny (transgenerational effects [TGE]) is unknown. We evaluated fungal endophyte-mediated consequences of maternal plant exposure to ozone on performance of the progeny under contrasting scenarios of the same factor (high and low) at two stages: seedling and young plant. With no variation in biomass, maternal ozone-induced oxidative damage in the progeny that was lower in endophyte-symbiotic plants. This correlated with an endophyte-mediated higher concentration of proline, a defence compound associated with stress control. Interestingly, ozone-induced TGE was not associated with reductions in plant survival. On the contrary, there was an overall positive effect on seedling survival in the presence of endophytes. The positive effect of maternal ozone increasing young plant survival was irrespective of symbiosis and only expressed under high ozone condition. Our study shows that hereditary microorganisms can modulate the capacity of plants to transgenerationally adjust progeny phenotype to atmospheric change.
Collapse
Affiliation(s)
- Andrea C Ueno
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Pedro E Gundel
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Talca, Chile
| | - Claudio M Ghersa
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
4
|
Matzrafi M, Preston C, Brunharo CA. Review: evolutionary drivers of agricultural adaptation in Lolium spp. PEST MANAGEMENT SCIENCE 2021; 77:2209-2218. [PMID: 33300265 PMCID: PMC8048627 DOI: 10.1002/ps.6219] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
The genus Lolium comprises many species, of which L. perenne ssp. multiflorum, L. perenne ssp. perenne, and L. rigidum are of worldwide agricultural importance as both pasture crops and as weeds. These three species are inter-fertile, obligate out-crossers with a self-incompatible reproduction system. This combination contributes to high genetic diversity that supplies new variants during expansion to new natural areas and agricultural environments. Human dispersal, de-domestication and crop-weed hybridization events between Lolium spp., or with others such as Festuca spp., are likely associated with their distinct weediness abilities. Furthermore, new introductions followed by introgression may hasten adaptation to new environments. Most Lolium-related weed science studies have focused on adaptation leading to herbicide resistance, but other forms of adaptation may also occur. In this review, we explore how the wide genetic variation among Lolium species and hybridization with other species may contribute to range expansion, and adaptation to both new agricultural practices and future predicted climate change scenarios. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maor Matzrafi
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization (ARO), Newe Ya'ar Research CenterRamat YishayIsrael
| | - Christopher Preston
- School of Agriculture, Food & WineUniversity of AdelaideGlen OsmondSAAustralia
| | | |
Collapse
|
5
|
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes-From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J Fungi (Basel) 2020; 6:E322. [PMID: 33261217 PMCID: PMC7720123 DOI: 10.3390/jof6040322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.
Collapse
Affiliation(s)
- John R. Caradus
- Grasslanz Technology Ltd., Palmerston North PB11008, New Zealand
| | | |
Collapse
|
6
|
Adedeji AA, Häggblom MM, Babalola OO. Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Sneck ME, Rudgers JA, Young CA, Miller TEX. Does host outcrossing disrupt compatibility with heritable symbionts? OIKOS 2019. [DOI: 10.1111/oik.06182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michelle E. Sneck
- Dept of BioSciences, Program in Ecology and Evolutionary Biology, Rice Univ Houston, TX 77005 USA
| | | | | | - Tom E. X. Miller
- Dept of BioSciences, Program in Ecology and Evolutionary Biology, Rice Univ Houston, TX 77005 USA
| |
Collapse
|
8
|
von Cräutlein M, Leinonen PH, Korpelainen H, Helander M, Väre H, Saikkonen K. Postglacial colonization history reflects in the genetic structure of natural populations of Festuca rubra in Europe. Ecol Evol 2019; 9:3661-3674. [PMID: 30962916 PMCID: PMC6434542 DOI: 10.1002/ece3.4997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 11/24/2022] Open
Abstract
We conducted a large-scale population genetic survey of genetic diversity of the host grass Festuca rubra s.l., which fitness can be highly dependent on its symbiotic fungus Epichloë festucae, to evaluate genetic variation and population structure across the European range. The 27 studied populations have previously been found to differ in frequencies of occurrence of the symbiotic fungus E. festucae and ploidy levels. As predicted, we found decreased genetic diversity in previously glaciated areas in comparison with nonglaciated regions and discovered three major maternal genetic groups: southern, northeastern, and northwestern Europe. Interestingly, host populations from Greenland were genetically similar to those from the Faroe Islands and Iceland, suggesting gene flow also between those areas. The level of variation among populations within regions is evidently highly dependent on the postglacial colonization history, in particular on the number of independent long-distance seed colonization events. Yet, also anthropogenic effects may have affected the population structure in F. rubra. We did not observe higher fungal infection rates in grass populations with lower levels of genetic variability. In fact, the fungal infection rates of E. festucae in relation to genetic variability of the host populations varied widely among geographical areas, which indicate differences in population histories due to colonization events and possible costs of systemic fungi in harsh environmental conditions. We found that the plants of different ploidy levels are genetically closely related within geographic areas indicating independent formation of polyploids in different maternal lineages.
Collapse
Affiliation(s)
- Maria von Cräutlein
- Natural Resources Institute Finland (Luke) Helsinki Finland
- Biodiversity Unit of University of Turku Turku Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre University of Helsinki Helsinki Finland
- Present address: Department of Agricultural Sciences, Viikki Plant Science Centre University of Helsinki Helsinki Finland
| | - Päivi H Leinonen
- Natural Resources Institute Finland (Luke) Helsinki Finland
- Biodiversity Unit of University of Turku Turku Finland
- Present address: Biodiversity Unit of University of Turku Turku Finland
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre University of Helsinki Helsinki Finland
| | | | - Henry Väre
- Botanical Museum, Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - Kari Saikkonen
- Natural Resources Institute Finland (Luke) Helsinki Finland
- Biodiversity Unit of University of Turku Turku Finland
- Present address: Biodiversity Unit of University of Turku Turku Finland
| |
Collapse
|
9
|
Bastías DA, Alejandra Martínez-Ghersa M, Newman JA, Card SD, Mace WJ, Gundel PE. The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses. PLANT, CELL & ENVIRONMENT 2018; 41:395-405. [PMID: 29194664 DOI: 10.1111/pce.13102] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal-produced alkaloids. Because of the role that alkaloids play in anti-herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N-formyllolines and N-acetylnorlolines) and consequently decreased the endophyte-conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte-conferred resistance against herbivores.
Collapse
Affiliation(s)
- Daniel A Bastías
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - M Alejandra Martínez-Ghersa
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Jonathan A Newman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Wade J Mace
- Forage Science, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Pedro E Gundel
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
10
|
Gagic M, Faville MJ, Zhang W, Forester NT, Rolston MP, Johnson RD, Ganesh S, Koolaard JP, Easton HS, Hudson D, Johnson LJ, Moon CD, Voisey CR. Seed Transmission of Epichloë Endophytes in Lolium perenne Is Heavily Influenced by Host Genetics. FRONTIERS IN PLANT SCIENCE 2018; 9:1580. [PMID: 30483280 PMCID: PMC6242978 DOI: 10.3389/fpls.2018.01580] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 05/14/2023]
Abstract
Vertical transmission of symbiotic Epichloë endophytes from host grasses into progeny seed is the primary mechanism by which the next generation of plants is colonized. This process is often imperfect, resulting in endophyte-free seedlings which may have poor ecological fitness if the endophyte confers protective benefits to its host. In this study, we investigated the influence of host genetics and environment on the vertical transmission of Epichloë festucae var. lolii strain AR37 in the temperate forage grass Lolium perenne. The efficiency of AR37 transmission into the seed of over 500 plant genotypes from five genetically diverse breeding populations was determined. In Populations I-III, which had undergone previous selection for high seed infection by AR37, mean transmission was 88, 93, and 92%, respectively. However, in Populations IV and V, which had not undergone previous selection, mean transmission was 69 and 70%, respectively. The transmission values, together with single-nucleotide polymorphism data obtained using genotyping-by-sequencing for each host, was used to develop a genomic prediction model for AR37 seed transmission. The predictive ability of the model was estimated at r = 0.54. While host genotype contributed greatly to differences in AR37 seed transmission, undefined environmental variables also contributed significantly to seed transmission across different years and geographic locations. There was evidence for a small host genotype-by-environment effect; however this was less pronounced than genotype or environment alone. Analysis of endophyte infection levels in parent plants within Populations I and IV revealed a loss of endophyte infection over time in Population IV only. This population also had lower average tiller infection frequencies than Population I, suggesting that AR37 failed to colonize all the daughter tillers and therefore seeds. However, we also observed that infection of seed by AR37 may fail during or after initiation of floral development from plants where all tillers remained endophyte-infected over time. While the effects of environment and host genotype on fungal endophyte transmission have been evaluated previously, this is the first study that quantifies the relative impacts of host genetics and environment on endophyte vertical transmission.
Collapse
Affiliation(s)
- Milan Gagic
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Marty J. Faville
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wei Zhang
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | | | | | | | - Siva Ganesh
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - John P. Koolaard
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - H. Sydney Easton
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Debbie Hudson
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Linda J. Johnson
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Christina D. Moon
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Christine R. Voisey
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
- *Correspondence: Christine R. Voisey,
| |
Collapse
|
11
|
Sneck ME, Rudgers JA, Young CA, Miller TEX. Variation in the Prevalence and Transmission of Heritable Symbionts Across Host Populations in Heterogeneous Environments. MICROBIAL ECOLOGY 2017; 74:640-653. [PMID: 28314899 DOI: 10.1007/s00248-017-0964-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/09/2017] [Indexed: 05/29/2023]
Abstract
Heritable microbes are abundant in nature and influential to their hosts and the communities in which they reside. However, drivers of variability in the prevalence of heritable symbionts and their rates of transmission are poorly resolved, particularly across host populations experiencing variable biotic and abiotic environments. To fill these gaps, we surveyed 25 populations of two native grasses (Elymus virginicus and Elymus canadensis) across the southern Great Plains (USA). Both grass species host heritable endophytic fungi (genus Epichloё) and can hybridize where their ranges overlap. From a subset of hosts, we characterized endophyte genotype using genetic loci that link to bioactive alkaloid production. First, we found mean vertical transmission rates and population-level prevalence were positively correlated, specifically for E. virginicus. However, both endophyte prevalence and transmission varied substantially across populations and did not strongly correlate with abiotic variables, with one exception: endophyte prevalence decreased as drought stress decreased for E. virginicus hosts. Second, we evaluated the potential influence of biotic factors and found that, after accounting for climate, endophyte genotype explained significant variation in symbiont inheritance. We also contrasted populations where host species co-occurred in sympatry vs. allopatry. Sympatry could potentially increase interspecific hybridization, but this variable did not associate with patterns of symbiont prevalence or transmission success. Our results reveal substantial variability in symbiont prevalence and transmission across host populations and identify symbiont genotype, and to a lesser extent, the abiotic environment as sources of this variation.
Collapse
Affiliation(s)
- Michelle E Sneck
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Carolyn A Young
- Samuel Roberts Noble Foundation, Inc, Ardmore, OK, 73401, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
12
|
Li X, Zhou Y, Mace W, Qin J, Liu H, Chen W, Ren A, Gao Y. Endophyte species influence the biomass production of the native grass Achnatherum sibiricum (L.) Keng under high nitrogen availability. Ecol Evol 2016; 6:8595-8606. [PMID: 28031810 PMCID: PMC5167029 DOI: 10.1002/ece3.2566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022] Open
Abstract
Research on the interaction of endophytes and native grasses normally takes infection status into account, but less often considers the species of endophyte involved in the interaction. Here, we examined the effect of endophyte infection, endophyte species, nitrogen availability, and plant maternal genotype on the performance of a wild grass, Achnatherum sibiricum. Six different Epichloë-infected maternal lines of A. sibiricum were used in the study; three lines harbored Epichloë gansuensis (Eg), while three lines harbored Epichloë sibirica (Es). These endophytes are vertically transmitted, while Eg also occasionally produces stromata on host tillers. We experimentally removed the endophyte from some ramets of the six lines, with the infected (E+) and uninfected (E-) plants grown under varying levels of nitrogen availability. Eg hosts produced more aboveground biomass than Es hosts only under high nitrogen supply. Endophyte species did not show any influence on the maximum net photosynthetic rate (Pmax), photosynthetic nitrogen use efficiency, or total phenolics of A. sibiricum under all nitrogen conditions. However, the plant maternal genotype did influence the Pmax and shoot biomass of A. sibiricum. Our results show that endophyte species influenced the shoot biomass of A. sibiricum, and this effect was dependent on nitrogen supply. As with most coevolutionary interactions, A. sibiricum that harbored Eg and Es may show pronounced geographic variation in natural habitats with increased nitrogen deposition. In addition, stroma-bearing endophyte (Eg) provides positive effects (e.g., higher biomass production) to A. sibiricum plants during the vegetative growth stage.
Collapse
Affiliation(s)
- Xia Li
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
- Present address: College of Life SciencesHebei UniversityBaodingChina
| | - Yong Zhou
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Wade Mace
- AgResearch LtdGrasslands Research CentrePalmerston NorthNew Zealand
| | - Junhua Qin
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Hui Liu
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Wei Chen
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Anzhi Ren
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Yubao Gao
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
13
|
Trognitz F, Hackl E, Widhalm S, Sessitsch A. The role of plant-microbiome interactions in weed establishment and control. FEMS Microbiol Ecol 2016; 92:fiw138. [PMID: 27387910 DOI: 10.1093/femsec/fiw138] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2016] [Indexed: 12/21/2022] Open
Abstract
The soil microbiome plays an important role in the establishment of weeds and invasive plants. They associate with microorganisms supporting their growth and health. Weed management strategies, like tillage and herbicide treatments, to control weeds generally alter soil structure going alongside with changes in the microbial community. Once a weed population establishes in the field, the plants build up a close relationship with the available microorganisms. Seeds or vegetative organs overwinter in soil and select early in the season their own microbiome before crop plants start to vegetate. Weed and crop plants compete for light, nutrition and water, but may differently interact with soil microorganisms. The development of new sequencing technologies for analyzing soil microbiomes has opened up the possibility for in depth analysis of the interaction between 'undesired' plants and crop plants under different management systems. These findings will help us to understand the functions of microorganisms involved in crop productivity and plant health, weed establishment and weed prevention. Exploitation of the knowledge offers the possibility to search for new biocontrol methods against weeds based on soil and plant-associated microorganisms. This review discusses the recent advances in understanding the functions of microbial communities for weed/invasive plant establishment and shows new ways to use plant-associated microorganisms to control weeds and invasive plants in different land management systems.
Collapse
Affiliation(s)
- Friederike Trognitz
- Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Evelyn Hackl
- Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Siegrid Widhalm
- Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Angela Sessitsch
- Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| |
Collapse
|
14
|
Jia T, Oberhofer M, Shymanovich T, Faeth SH. Effects of Hybrid and Non-hybrid Epichloë Endophytes and Their Associated Host Genotypes on the Response of a Native Grass to Varying Environments. MICROBIAL ECOLOGY 2016; 72:185-196. [PMID: 26909796 DOI: 10.1007/s00248-016-0743-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Asexual Epichloë endophytes are prevalent in cool season grasses, and many are of hybrid origin. Hybridization of asexual endophytes is thought to provide a rapid influx of genetic variation that may be adaptive to endophyte-host grass symbiota in stressful environments. For Arizona fescue (Festuca arizonica), hybrid symbiota are commonly found in resource-poor environments, whereas non-hybrid symbiota are more common in resource-rich environments. There have been very few experimental tests where infection, hybrid and non-hybrid status, and plant genotype have been controlled to tease apart their effects on host phenotype and fitness in different environments. We conducted a greenhouse experiment where hybrid (H) and non-hybrid (NH) endophytes were inoculated into plant genotypes that were originally uninfected (E-) or once infected with either the H or NH endophytes. Nine endophyte and plant genotypic group combinations were grown under low and high water and nutrient treatments. Inoculation with the resident H endophyte enhanced growth and altered allocation to roots and shoots, but these effects were greatest in resource-rich environments, contrary to expectations. We found no evidence of co-adaptation between endophyte species and their associated host genotypes. However, naturally E- plants performed better when inoculated with the hybrid endophyte, suggesting these plants were derived from H infected lineages. Our results show complex interactions between endophyte species of hybrid and non-hybrid origin with their host plant genotypes and environmental factors.
Collapse
Affiliation(s)
- Tong Jia
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China.
| | - Martina Oberhofer
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC, 27412, USA
| | - Tatsiana Shymanovich
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC, 27412, USA
| | - Stanley H Faeth
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC, 27412, USA
| |
Collapse
|
15
|
|
16
|
Saikkonen K, Young CA, Helander M, Schardl CL. Endophytic Epichloë species and their grass hosts: from evolution to applications. PLANT MOLECULAR BIOLOGY 2016; 90:665-75. [PMID: 26542393 PMCID: PMC4819788 DOI: 10.1007/s11103-015-0399-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 05/21/2023]
Abstract
The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.
Collapse
Affiliation(s)
- Kari Saikkonen
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Itäinen Pitkäkatu 3, 20520, Turku, Finland.
| | - Carolyn A Young
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Marjo Helander
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Itäinen Pitkäkatu 3, 20520, Turku, Finland
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
17
|
Song M, Li X, Saikkonen K, Li C, Nan Z. An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2014.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Affiliation(s)
| | - James D Bever
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
19
|
Gazis R, Skaltsas D, Chaverri P. Novel endophytic lineages of Tolypocladium provide new insights into the ecology and evolution of Cordyceps-like fungi. Mycologia 2014; 106:1090-105. [PMID: 24987126 DOI: 10.3852/13-346] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objective of this study was to identify a group of unknown endophytic fungal isolates from the living sapwood of wild and planted Hevea (rubber tree) populations. Three novel lineages of Tolypocladium are described based on molecular and morphological data. Findings from this study open a window for novel hypotheses regarding the ecology and role of endophytes within plant communities as well as trait evolution and potential forces driving diversification of Cordyceps-like fungi. This study stresses the importance of integrating asexual and sexual fungal states for a more complete understanding of the natural history of this diverse group. In addition, it highlights the study of fungi in the sapwood of tropical trees as habitat for the discovery of novel fungal lineages and substrate associations.
Collapse
Affiliation(s)
- Romina Gazis
- Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610
| | - Demetra Skaltsas
- University of Maryland, Department of Plant Science and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742
| | - Priscila Chaverri
- University of Maryland, Department of Plant Science and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742, and Universidad de Costa Rica, Escuela de Biología, Apdo. 11501-2060, San Pedro, San José, Costa Rica
| |
Collapse
|
20
|
Fungal endophyte mediated occurrence of seminiferous and pseudoviviparous panicles in Festuca rubra. FUNGAL DIVERS 2014. [DOI: 10.1007/s13225-014-0290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Gundel PE, Pérez LI, Helander M, Saikkonen K. Symbiotically modified organisms: nontoxic fungal endophytes in grasses. TRENDS IN PLANT SCIENCE 2013; 18:420-7. [PMID: 23562460 DOI: 10.1016/j.tplants.2013.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/25/2013] [Accepted: 03/08/2013] [Indexed: 05/21/2023]
Abstract
We propose that symbiotically modified organisms (SMOs) should be taken into account in sustainable agriculture. In this opinion article, we present the results of a meta-analysis of the literature, with a particular focus on the potential of SMOs in forage and turf grass production, to determine the impact of endophytes in grasses on livestock, the grassland ecosystems, and associated environments. SMOs can be incorporated into breeding programs to improve grass yield, resistance to pests and weeds, and forage quality for livestock by decreasing the level of toxic alkaloids. However, the benefits of these selected grass-endophyte symbiota appear to be highly dependent on grass cultivar, fungal strain, and environmental conditions, requiring a comprehensive understanding of the genetic bases and phenotypic plasticity of the traits of the plant-microbe unit in different environments.
Collapse
Affiliation(s)
- Pedro E Gundel
- MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland.
| | | | | | | |
Collapse
|
22
|
Gundel PE, Garibaldi LA, Helander M, Saikkonen K. Symbiotic interactions as drivers of trade-offs in plants: effects of fungal endophytes on tall fescue. FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0224-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Gundel PE, Martínez-Ghersa MA, Omacini M, Cuyeu R, Pagano E, Ríos R, Ghersa CM. Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol Appl 2013; 5:838-49. [PMID: 23346228 PMCID: PMC3552401 DOI: 10.1111/j.1752-4571.2012.00261.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/06/2012] [Indexed: 12/01/2022] Open
Abstract
Certain species of the Pooideae subfamily develop stress tolerance and herbivory resistance through symbiosis with vertically transmitted, asexual fungi. This symbiosis is specific, and genetic factors modulate the compatibility between partners. Although gene flow is clearly a fitness trait in allogamous grasses, because it injects hybrid vigor and raw material for evolution, it could reduce compatibility and thus mutualism effectiveness. To explore the importance of host genetic background in modulating the performance of symbiosis, Lolium multiflorum plants, infected and noninfected with Neotyphodium occultans, were crossed with genetically distant plants of isolines (susceptible and resistant to diclofop-methyl herbicide) bred from two cultivars and exposed to stress. The endophyte improved seedling survival in genotypes susceptible to herbicide, while it had a negative effect on one of the genetically resistant crosses. Mutualism provided resistance to herbivory independently of the host genotype, but this effect vanished under stress. While no endophyte effect was observed on host reproductive success, it was increased by interpopulation plant crosses. Neither gene flow nor herbicide had an important impact on endophyte transmission. Host fitness improvements attributable to gene flow do not appear to result in direct conflict with mutualism while this seems to be an important mechanism for the ecological and contemporary evolution of the symbiotum.
Collapse
Affiliation(s)
- Pedro E Gundel
- IFEVA-Facultad de Agronomía (UBA)/CONICET Argentina ; MTT Agrifood Research, Plant Protection Finland
| | | | | | | | | | | | | |
Collapse
|
24
|
Gundel PE, Helander M, Casas C, Hamilton CE, Faeth SH, Saikkonen K. Neotyphodium fungal endophyte in tall fescue (Schedonorus phoenix): a comparison of three Northern European wild populations and the cultivar Kentucky-31. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0173-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Hamilton CE, Gundel PE, Helander M, Saikkonen K. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0158-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
|
27
|
Bernatchez L, Tseng M. Evolutionary applications summer 2011. Evol Appl 2011; 4:617-20. [PMID: 25568009 PMCID: PMC3352538 DOI: 10.1111/j.1752-4571.2011.00205.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Louis Bernatchez
- Département de biologie, Université Laval Québec, QC, Canada e-mail:
| | - Michelle Tseng
- Department of Zoology, University of British Columbia Vancouver, BC, Canada e-mail:
| |
Collapse
|