1
|
Koido S. Dendritic-Tumor Fusion Cell-Based Cancer Vaccines. Int J Mol Sci 2016; 17:ijms17060828. [PMID: 27240347 PMCID: PMC4926362 DOI: 10.3390/ijms17060828] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play a critical role in the induction of antitumor immunity. Therefore, various strategies have been developed to deliver tumor-associated antigens (TAAs) to DCs as cancer vaccines. The fusion of DCs and whole tumor cells to generate DC-tumor fusion cells (DC-tumor FCs) is an alternative strategy to treat cancer patients. The cell fusion method allows DCs to be exposed to the broad array of TAAs originally expressed by whole tumor cells. DCs then process TAAs endogenously and present them through major histocompatibility complex (MHC) class I and II pathways in the context of costimulatory molecules, resulting in simultaneous activation of both CD4⁺ and CD8⁺ T cells. DC-tumor FCs require optimized enhanced immunogenicity of both DCs and whole tumor cells. In this context, an effective fusion strategy also needs to produce immunogenic DC-tumor FCs. We discuss the potential ability of DC-tumor FCs and the recent progress in improving clinical outcomes by DC-tumor FC-based cancer vaccines.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 277-8567 Chiba, Japan.
| |
Collapse
|
2
|
Wang X, Zhang FC, Zhao HY, Lu XL, Sun Y, Xiong ZY, Jiang XB. Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model. Tumour Biol 2014; 35:7781-91. [PMID: 24816916 PMCID: PMC4158415 DOI: 10.1007/s13277-014-1867-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/18/2014] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Fang-Cheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Xiao-Ling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Zhi-Yong Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| |
Collapse
|
3
|
Koido S, Homma S, Kan S, Takakura K, Namiki Y, Kobayashi H, Ito Z, Uchiyama K, Kajihara M, Arihiro S, Arakawa H, Okamoto M, Ohkusa T, Gong J, Tajiri H. Induction of antigen-specific cytotoxic T lymphocytes by fusion cells generated from allogeneic plasmacytoid dendritic and tumor cells. Int J Oncol 2014; 45:470-8. [PMID: 24819411 DOI: 10.3892/ijo.2014.2433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
Previous work has demonstrated that fusion cells generated from autologous monocyte-derived dendritic cells (MoDCs) and whole tumor cells induce efficient antigen-specific cytotoxic T lymphocytes. A major limitation to the use of this strategy is the availability of adequate amounts of autologous tumor cells. Moreover, MoDCs from cancer patients are often defective in their antigen-processing and presentation machinery. In this study, two types of allogeneic cells, a leukemia plasmacytoid dendritic cell (pDC) line (PMDC05) and pancreatic cancer cell lines (PANC-1 or MIA PaCa-2), were fused instead of autologous MoDCs and tumor cells. We created four types of pDC/tumor fusion cells by alternating fusion partners and treating with lipopolysaccharide (LPS): i) PMDC05 fused with PANC-1 (pDC/PANC-1), ii) PMDC05 fused with MIA PaCa-2 (pDC/MIA PaCa-2), iii) LPS-stimulated pDC/PANC-1 (LPS-pDC/PANC-1) and iv) LPS-stimulated pDC/MIA PaCa-2 (LPS-pDC/MIA PaCa-2) and examined their antitumor immune responses. The LPS-pDC/tumor cell fusions were the most active, as demonstrated by their: i) upregulated expression of HLA-DR and CD86 on a per-fusion-cell basis, ii) increased production of IL-12p70, iii) generation of a higher percentage of IFN-γ-producing CD4⁺ and CD8⁺ T cells and iv) augmented induction of MUC1-specific CD8⁺ T cells that lyse target tumor cells. This study provides the first evidence for an in vitro induction of antigen-specific cytotoxic T lymphocytes by LPS-stimulated fusion cells generated from leukemia plasmacytoid DCs and tumor cells and suggests that this strategy has potential applicability to the field of adoptive immunotherapy.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Sadamu Homma
- Department of Oncology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shin Kan
- Department of Oncology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Yoshihisa Namiki
- Institute of Clinical Medicine and Research, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Hiroko Kobayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Seiji Arihiro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Hiroshi Arakawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Masato Okamoto
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Jianlin Gong
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hisao Tajiri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| |
Collapse
|
4
|
Purified dendritic cell-tumor fusion hybrids supplemented with non-adherent dendritic cells fraction are superior activators of antitumor immunity. PLoS One 2014; 9:e86772. [PMID: 24466232 PMCID: PMC3900640 DOI: 10.1371/journal.pone.0086772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
Background Strong evidence supports the DC-tumor fusion hybrid vaccination strategy, but the best fusion product components to use remains controversial. Fusion products contain DC-tumor fusion hybrids, unfused DCs and unfused tumor cells. Various fractions have been used in previous studies, including purified hybrids, the adherent cell fraction or the whole fusion mixture. The extent to which the hybrids themselves or other components are responsible for antitumor immunity or which components should be used to maximize the antitumor immunity remains unknown. Methods Patient-derived breast tumor cells and DCs were electro-fused and purified. The antitumor immune responses induced by the purified hybrids and the other components were compared. Results Except for DC-tumor hybrids, the non-adherent cell fraction containing mainly unfused DCs also contributed a lot in antitumor immunity. Purified hybrids supplemented with the non-adherent cell population elicited the most powerful antitumor immune response. After irradiation and electro-fusion, tumor cells underwent necrosis, and the unfused DCs phagocytosed the necrotic tumor cells or tumor debris, which resulted in significant DC maturation. This may be the immunogenicity mechanism of the non-adherent unfused DCs fraction. Conclusions The non-adherent cell fraction (containing mainly unfused DCs) from total DC/tumor fusion products had enhanced immunogenicity that resulted from apoptotic/necrotic tumor cell phagocytosis and increased DC maturation. Purified fusion hybrids supplemented with the non-adherent cell population enhanced the antitumor immune responses, avoiding unnecessary use of the tumor cell fraction, which has many drawbacks. Purified hybrids supplemented with the non-adherent cell fraction may represent a better approach to the DC-tumor fusion hybrid vaccination strategy.
Collapse
|