1
|
Yan D, Xiong C, Zhong Q, Yao Y, Chen S, Mei X, Zhu S. Identification of late-life depression and mild cognitive impairment via serum surface-enhanced Raman spectroscopy and multivariate statistical analysis. BIOMEDICAL OPTICS EXPRESS 2023; 14:2920-2933. [PMID: 37342695 PMCID: PMC10278622 DOI: 10.1364/boe.487939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Identification of age-related neuropsychiatric disorders, i.e., late-life depression (LDD) and mild cognitive impairment (MCI) is of imperative clinical value considering the large probability of misdiagnosis and current lack of sensitive, non-invasive and low-cost diagnostic approaches. Here, the serum surface-enhanced Raman spectroscopy (SERS) technique is proposed to identify healthy controls, LDD and MCI patients. Based on SERS peaks analysis, abnormal levels of ascorbic acid, saccharide, cell-free DNA and amino acids in serum are found to be potential biomarkers for identifying LDD and MCI. These biomarkers might be related to oxidative stress, nutritional status, lipid peroxidation and metabolic abnormalities. Moreover, partial least square analysis-linear discriminant analysis (PLS-LDA) is applied to those collected SERS spectra. Finally, the overall identification accuracy is 83.2%, and accuracies are 91.6% and 85.7% for differentiating healthy versus neuropsychiatric disorders and LDD versus MCI, respectively. Thus, the serum SERS combined with multivariate statistical analysis has proved its successful potential for rapid, sensitive and non-invasive identification of healthy, LDD and MCI, which may open new avenues for early diagnosis and timely intervention for age-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Denghui Yan
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Changchun Xiong
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Qingshan Zhong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yudong Yao
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110167, China
| | - Xi Mei
- Ningbo Kangning Hospital, Ningbo Key Laboratory of Sleep Medicine, Affiliated Tongyi Hospital of Medical College of Ningbo University, Ningbo 315211, China
| | - Shanshan Zhu
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, China
- Health Science Center, Ningbo University, Ningbo 315211, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
2
|
Luminescent lanthanide metallogel as a sensor array to efficiently discriminate various saccharides. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
3
|
Oommen AM, Roberts KJ, Joshi L, Cunningham S. Transcriptomic Analysis of Glycosylation and Neuroregulatory Pathways in Rodent Models in Response to Psychedelic Molecules. Int J Mol Sci 2023; 24:ijms24021200. [PMID: 36674723 PMCID: PMC9867456 DOI: 10.3390/ijms24021200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The potential for psychedelic molecules in impacting cognitive flexibility has long been supported and acknowledged across scientific reports. In the current study, an approach leveraging knowledge-based gene-set information analysis has been adopted to explore the potential impact of psychedelic molecules on both glycosylation, (a post-translational modifications (PTM)) and on neuro-regulatory pathways. Though limitations and restrictions rise from the scarcity of publicly available 'omics' data, targeted analysis enabled us to identify a number of key glycogenes (Hexb, Hs6st2, Col9a2, B3gat2, Mgat5, Bgn) involved the structural organization of extracellular matrix and neuroprotective factors (Kl, Pomc, Oxt, Gal, Avp, Cartpt) which play vital roles in neuron protection, development as well as synaptic stability. In response to psychedelic molecules, we found that these genes and associated pathways are transcriptional altered in rodent models. The approach used indicates the potential to exploit existing datasets for hypothesis generation and testing for the molecular processes which play a role in the physiological response to psychedelic molecule effects. These reported findings, which focused on alterations in glycogenes and neuro-regulatory factors may provide a novel range of biomarkers to track the beneficial, as well as potential toxicological effects of psychedelic molecules.
Collapse
Affiliation(s)
- Anup M. Oommen
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, H91 W2TY Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, Biomedical Sciences, University of Galway, H91 W2TY Galway, Ireland
| | - Katherine J. Roberts
- Department of Health and Behaviour Studies, Teachers College, Columbia University, New York, NY 10027, USA
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, H91 W2TY Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, Biomedical Sciences, University of Galway, H91 W2TY Galway, Ireland
- Correspondence: (L.J.); (S.C.)
| | - Stephen Cunningham
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, H91 W2TY Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, Biomedical Sciences, University of Galway, H91 W2TY Galway, Ireland
- Correspondence: (L.J.); (S.C.)
| |
Collapse
|
4
|
Babiszewska M. Effects of energy and essential fatty acids content in breast milk on infant's head dimensions. Am J Hum Biol 2020; 32:e23418. [PMID: 32307819 DOI: 10.1002/ajhb.23418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Essential fatty acids (EFA), including linoleic acid (LA) and alpha-linolenic acid (ALA), are indispensable for proper brain growth especially in the first months after birth when it develops most rapidly. Since fats, especially EFA, in breast milk are highly variable between mothers, we indirectly examined whether milk energy, LA and ALA content in breast milk affect volume and shape of the infant's head. METHODS The study encompassed 60 mothers and their healthy term-born infants between the third and sixth month of lactation. The percentage of macronutrients and dry matter in human milk samples was assessed using Fourier-transform infrared spectroscopy (FTIR), and LA and ALA concentrations in breast milk were determined using gas chromatography (GC). Infant head measurements were taken using standard anthropometric equipment and methods. RESULTS LA content in breast milk was found to be positively associated with head volume in boys. Furthermore, ALA content was positively associated with the head height-to-length ratio thus with more arched head in infants irrespective of sex. No relationship was found between milk energy content in mothers' milk and infant head dimensions. CONCLUSIONS This is the first study to demonstrate a relationship between EFA concentration in human milk and infant head dimensions. Given that LA and ALA in human milk are variable in women and due to the extremely rapid growth of nerve tissue in the first months of life, adequate supply of EFA in breast milk should attract the attention of public health sciences.
Collapse
Affiliation(s)
- Magdalena Babiszewska
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Peng Y, Zhang F, Pan X, Hou Y, Yang B. Poly(vinyl alcohol)–cationic cellulose copolymer encapsulated SiO2 stationary phase for hydrophilic interaction liquid chromatography. RSC Adv 2017. [DOI: 10.1039/c7ra01958k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A poly(vinyl alcohol)–cationic cellulose copolymer encapsulated SiO2 HILIC stationary phase is described, which exhibits excellent separation for various analytes.
Collapse
Affiliation(s)
- Yahui Peng
- School of Pharmacy
- East-China University of Science and Technology
- Shanghai 200237
- China
| | - Feifang Zhang
- School of Pharmacy
- East-China University of Science and Technology
- Shanghai 200237
- China
| | - Xiao Pan
- School of Pharmacy
- East-China University of Science and Technology
- Shanghai 200237
- China
| | - Yanjie Hou
- School of Pharmacy
- East-China University of Science and Technology
- Shanghai 200237
- China
| | - Bingcheng Yang
- School of Pharmacy
- East-China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
6
|
Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem 2015; 26:455-65. [PMID: 25662731 DOI: 10.1016/j.jnutbio.2014.11.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/27/2022]
Abstract
Human milk oligosaccharides (HMOs) are unique with regard to their diversity, quantity and complexity, particularly in comparison to bovine milk oligosaccharides. HMOs are associated with functional development during early life, mainly related to immunity and intestinal health. Whether HMOs elicit a positive effect on cognitive capabilities of lactating infants remains an open question. This study evaluated the role of the most abundant HMO, 2'-fucosyllactose (2'-FL), in synaptic plasticity and learning capabilities in rodents. Mice and rats were prepared for the chronic recording of field excitatory postsynaptic potentials evoked at the hippocampal CA3-CA1 synapse. Following chronic oral administration of 2'-FL, both species showed improvements in input/output curves and in long-term potentiation (LTP) evoked experimentally in alert behaving animals. This effect on LTP was related to better performance of animals in various types of learning behavioral tests. Mice were tested for spatial learning, working memory and operant conditioning using the IntelliCage system, while rats were submitted to a fixed-ratio schedule in the Skinner box. In both cases, 2'-FL-treated animals performed significantly better than controls. In addition, chronic administration of 2'-FL increased the expression of different molecules involved in the storage of newly acquired memories, such as the postsynaptic density protein 95, phosphorylated calcium/calmodulin-dependent kinase II and brain-derived neurotrophic factor in cortical and subcortical structures. Taken together, the data show that dietary 2'-FL affects cognitive domains and improves learning and memory in rodents.
Collapse
|
7
|
Esins J, Schultz J, Bülthoff I, Kennerknecht I. Galactose uncovers face recognition and mental images in congenital prosopagnosia: the first case report. Nutr Neurosci 2013; 17:239-40. [PMID: 24164936 PMCID: PMC4096494 DOI: 10.1179/1476830513y.0000000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A woman in her early 40s with congenital prosopagnosia and attention deficit hyperactivity disorder observed for the first time sudden and extensive improvement of her face recognition abilities, mental imagery, and sense of navigation after galactose intake. This effect of galactose on prosopagnosia has never been reported before. Even if this effect is restricted to a subform of congenital prosopagnosia, galactose might improve the condition of other prosopagnosics. Congenital prosopagnosia, the inability to recognize other people by their face, has extensive negative impact on everyday life. It has a high prevalence of about 2.5%. Monosaccharides are known to have a positive impact on cognitive performance. Here, we report the case of a prosopagnosic woman for whom the daily intake of 5 g of galactose resulted in a remarkable improvement of her lifelong face blindness, along with improved sense of orientation and more vivid mental imagery. All these improvements vanished after discontinuing galactose intake. The self-reported effects of galactose were wide-ranging and remarkably strong but could not be reproduced for 16 other prosopagnosics tested. Indications about heterogeneity within prosopagnosia have been reported; this could explain the difficulty to find similar effects in other prosopagnosics. Detailed analyses of the effects of galactose in prosopagnosia might give more insight into the effects of galactose on human cognition in general. Galactose is cheap and easy to obtain, therefore, a systematic test of its positive effects on other cases of congenital prosopagnosia may be warranted.
Collapse
Affiliation(s)
- Janina Esins
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Correspondence to: Janina Esins, Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076, Tübingen, Germany.
| | | | | | - Ingo Kennerknecht
- Institute of Human Genetics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
8
|
Best T, Kemps E, Bryan J. A role for dietary saccharide intake in cognitive performance. Nutr Neurosci 2013; 10:113-20. [DOI: 10.1080/10284150701413170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Nelson ED, Ramberg JE, Best T, Sinnott RA. Neurologic effects of exogenous saccharides: a review of controlled human, animal, and in vitro studies. Nutr Neurosci 2012; 15:149-62. [PMID: 22417773 PMCID: PMC3389826 DOI: 10.1179/1476830512y.0000000004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Current research efforts are centered on delineating the novel health benefits of naturally derived saccharides, including growing interest in their abilities to influence neurologic health. We performed a comprehensive review of the literature to consolidate all controlled studies assessing various roles of exogenous saccharide compounds and polysaccharide-rich extracts from plants, fungi, and other natural sources on brain function, with a significant focus on benefits derived from oral intake. METHODS Studies were identified by conducting electronic searches on PubMed and Google Scholar. Reference lists of articles were also reviewed for additional relevant studies. Only articles published in English were included in this review. RESULTS Six randomized, double-blind, placebo-controlled clinical studies were identified in which consumption of a blend of plant-derived polysaccharides showed positive effects on cognitive function and mood in healthy adults. A separate controlled clinical study observed improvements in well-being with ingestion of a yeast beta-glucan. Numerous animal and in vitro studies have demonstrated the ability of individual saccharide compounds and polysaccharide-rich extracts to modify behavior, enhance synaptic plasticity, and provide neuroprotective effects. DISCUSSION Although the mechanisms by which exogenous saccharides can influence brain function are not well understood at this time, the literature suggests that certain naturally occurring compounds and polysaccharide-rich extracts show promise, when taken orally, in supporting neurologic health and function. Additional well-controlled clinical studies on larger populations are necessary, however, before specific recommendations can be made.
Collapse
|
10
|
Best T, Kemps E, Bryan J. Saccharide effects on cognition and well-being in middle-aged adults: a randomized controlled trial. Dev Neuropsychol 2010; 35:66-80. [PMID: 20390593 DOI: 10.1080/87565640903325709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The current study used a randomized, double-blind, placebo-controlled design to investigate the effects of saccharide supplementation on cognition and well-being in middle-aged adults. Participants (N = 109; 45-60 years) took a teaspoon of a combination of saccharides or a placebo twice daily for 12 weeks (3.6 g per day). Before and after this supplementation period, participants completed alternate forms of standardized tests of cognition and self-report measures of well-being. Significant beneficial effects of saccharide supplementation were found for memory performance and indicators of well-being. The potential for these nutrients to optimize cognitive function and well-being in older adults warrants ongoing investigation.
Collapse
Affiliation(s)
- Talitha Best
- School of Psychology, Flinders University, Adelaide, Australia.
| | | | | |
Collapse
|
11
|
The influence of carbohydrate on cognitive performance: a critical evaluation from the perspective of glycaemic load. Br J Nutr 2009; 101:941-9. [DOI: 10.1017/s0007114508199019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Links between nutrition and cognition are widely acknowledged. Within the context of short-term cognitive performance, carbohydrate has been the dietary component most commonly investigated. The majority of studies investigating the influence of carbohydrate on cognitive performance have employed oral glucose drink interventions followed by measures of performance on cognitive tests. More recently, studies have investigated the effect of different carbohydrates on cognitive performance rather than just pure glucose drinks. To date, studies have not been evaluated based on a standardised measure of glycaemic response, such as glycaemic load. The present review provides a critical evaluation of eight studies that have explored the relationships between food carbohydrate and cognitive performance and allow glycaemic load to be used as a basis for comparison. The key finding is that these provide insufficient evidence to support a consistent effect of glycaemic load on short-term cognitive performance. Future studies should employ consistent test methodologies and describe food interventions in more detail to facilitate meaningful comparisons and interpretations of results.
Collapse
|
12
|
Association between dietary saccharide intake and self-reported memory performance in middle-aged adults. Br J Nutr 2008; 101:93-9. [DOI: 10.1017/s0007114508984257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aims of the present study were to assess dietary intake of saccharides in middle-aged adults, and to determine whether intakes of these sugar nutrients were related to self-reported memory performance. A population-based sample of 1183 men and women (aged 40–60 years) completed questionnaires assessing everyday memory function. Dietary intake status of saccharides was estimated using a self-completed, quantified FFQ. After controlling for demographic and health measures (for example, time spent exercising, smoking and alcohol consumption), saccharide intake was related to better self-reported memory functioning. Thus, longer-term intakes of saccharides through the usual diet may be positively related to perceived memory performance in mid-life.
Collapse
|
13
|
Affiliation(s)
- Heather E. Murrey
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|