1
|
Risby H, Robinson G, Chandra N, King G, Vivancos R, Smith R, Thomas D, Fox A, McCarthy N, Chalmers RM. Application of a new multi-locus variable number tandem repeat analysis (MLVA) scheme for the seasonal investigation of Cryptosporidium parvum cases in Wales and the northwest of England, spring 2022. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100151. [PMID: 38021189 PMCID: PMC10665698 DOI: 10.1016/j.crpvbd.2023.100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
The protozoan Cryptosporidium parvum is an important cause of gastroenteritis in humans and livestock, and cryptosporidiosis outbreaks are common. However, a multi-locus genotyping scheme is not widely adopted. We describe the further development and application of a seven-locus multi-locus variable number of tandem repeats analysis (MLVA) scheme. From 28th March to 31st July 2022, confirmed C. parvum stools (n = 213) from cryptosporidiosis patients (cases) in Wales (n = 95) and the north west of England (n = 118) were tested by MLVA. Typability (defined as alleles identified at all seven loci in a sample) was 81.2% and discriminatory power estimated by Hunter Gaston Discriminatory Index was 0.99. A MLVA profile was constructed from the alleles, expressed in chromosomal order. Profiles were defined as simple (single allele at each locus) or mixed (more than one allele at any locus). A total of 161 MLVA profiles were identified; 13 were mixed, an additional 38 simple profiles contained null records, and 110 were complete simple profiles. A minimum spanning tree was constructed of simple MLVA profiles and those identical at all seven loci defined genetic clusters of cases (here, null records were considered as an allele); 77 cases formed 25 clusters, ranging from two to nine (mode = two) cases. The largest cluster, following epidemiological investigation, signalled a newly-identified outbreak. Two other cases with mixed profiles that contained the outbreak alleles were included in the outbreak investigation. In another epidemiologically-identified outbreak of six initial cases, MLVA detected two additional cases. In a third, small outbreak of three cases, identical MLVA profiles strengthened the microbiological evidence. Review of the performance characteristics of the individual loci and of the seven-locus scheme suggested that two loci might be candidates for review, but a larger dataset over a wider geographical area and longer timeframe will help inform decision-making about the scheme by user laboratories and stakeholders (such as public health agencies). This MLVA scheme is straightforward in use, fast and cheap compared to sequence-based methods, identifies mixed infections, provides an important tool for C. parvum surveillance, and can enhance outbreak investigations and public health action.
Collapse
Affiliation(s)
- Harriet Risby
- Cryptosporidium Reference Unit, Public Health Wales Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Nastassya Chandra
- United Kingdom Health Security Agency, Field Service North West, Suite 3B, 3rd Floor, Cunard Building, Water Street, Liverpool, L3 1DS, UK
| | - Grace King
- Communicable Disease Surveillance Centre, Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, CF10 4BZ, UK
| | - Roberto Vivancos
- United Kingdom Health Security Agency, Field Service North West, Suite 3B, 3rd Floor, Cunard Building, Water Street, Liverpool, L3 1DS, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Liverpool, L69 3GL, UK
- Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Robert Smith
- Communicable Disease Surveillance Centre, Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, CF10 4BZ, UK
| | - Daniel Thomas
- Communicable Disease Surveillance Centre, Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, CF10 4BZ, UK
| | - Andrew Fox
- United Kingdom Health Security Agency, Field Service North West, Suite 3B, 3rd Floor, Cunard Building, Water Street, Liverpool, L3 1DS, UK
| | - Noel McCarthy
- University of Warwick, Coventry, CV4 7AL, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Liverpool, L69 3GL, UK
- Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Rachel M. Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| |
Collapse
|
2
|
Robinson G, Pérez-Cordón G, Hamilton C, Katzer F, Connelly L, Alexander CL, Chalmers RM. Validation of a multilocus genotyping scheme for subtyping Cryptosporidium parvum for epidemiological purposes. Food Waterborne Parasitol 2022; 27:e00151. [PMID: 35498551 PMCID: PMC9043402 DOI: 10.1016/j.fawpar.2022.e00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
Subtyping Cryptosporidium parvum for outbreak investigations or epidemiological surveillance usually relies on DNA sequence analysis of a gene coding for a 60 KDa glycoprotein (gp60). Although gp60 can be useful for allelic discrimination and to help investigate sources and routes of transmission, the presence of common subtypes and recombination during the parasite's sexual life-cycle demand a multilocus-based method for more discriminatory genotyping. While whole genome sequencing would provide the ultimate approach, it is a time consuming and expensive option for faecal parasites such as Cryptosporidium that occur at low density and are difficult to propagate routinely. In this study, we selected and evaluated a panel of previously identified variable-number tandem-repeat (VNTR) markers, to establish a multilocus genotyping scheme based on fragment sizing, appropriate for inter-laboratory surveillance and outbreak investigations. Seven VNTR markers were validated in vitro and demonstrated typeability of 0.85 and discriminatory power of 0.99. The discriminatory power was much greater than the currently used gp60 sequencing (0.74), which identified 26 subtypes, compared to 100 different MLVA profiles within the same sample set. The assay was robust, with repeatable results and reproducibility across three laboratories demonstrating the scheme was suitable for inter-laboratory comparison of C. parvum subtypes. As the majority of genotypes (79%) were unique among epidemiologically unrelated samples, there was efficiency to infer linkage, and epidemiological concordance was observed in historical outbreaks. We propose that the multilocus variable number of tandem repeats analysis scheme is suitable to assist outbreak investigations.
Collapse
|
3
|
Genetic Diversity and Population Structure in a Vitis spp. Core Collection Investigated by SNP Markers. DIVERSITY 2020. [DOI: 10.3390/d12030103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single nucleotide polymorphism (SNP) genotyping arrays are powerful tools to measure the level of genetic polymorphism within a population. The coming of next-generation sequencing technologies led to identifying thousands and millions of SNP loci useful in assessing the genetic diversity. The Vitis genotyping array, containing 18k SNP loci, has been developed and used to detect genetic diversity of Vitis vinifera germplasm. So far, this array was not validated on non-vinifera genotypes used as grapevine rootstocks. In this work, a core collection of 70 grapevine rootstocks, composed of individuals belonging to Vitis species not commonly used in the breeding programs, was genotyped using the 18k SNP genotyping array. SNP results were compared to the established SSR (Simple Sequence Repeat) markers in terms of heterozygosity and genetic structure of the core collection. Genotyping array has proved to be a valuable tool for genotyping of grapevine rootstocks, with more than 90% of SNPs successfully amplified. Structure analysis detected a high degree of admixed genotypes, supported by the complex genetic background of non-vinifera germplasm. Moreover, SNPs clearly differentiated non-vinifera and vinifera germplasm. These results represent a first step in studying the genetic diversity of non-conventional breeding material that will be used to select rootstocks with high tolerance to limiting environmental conditions.
Collapse
|
4
|
Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon AF, Bérard A, Chauveau A, de Andrés MT, Hausmann L, Ibáñez J, Le Paslier MC, Maghradze D, Martinez-Zapater JM, Maul E, Ponnaiah M, Töpfer R, Péros JP, Boursiquot JM. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS One 2018; 13:e0192540. [PMID: 29420602 PMCID: PMC5805323 DOI: 10.1371/journal.pone.0192540] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/25/2018] [Indexed: 12/18/2022] Open
Abstract
Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26-0.32) and linkage disequilibrium (LD, 28.8-58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine.
Collapse
Affiliation(s)
- Valérie Laucou
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Amandine Launay
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Roberto Bacilieri
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Thierry Lacombe
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,INRA Unité Expérimentale de Vassal, Centre de Ressources Biologiques de la Vigne, Marseillan-plage, France
| | | | - Aurélie Bérard
- EPGV, Univ Paris-Saclay, CEA, IG-CNG, INRA, Evry, France
| | | | | | - Ludger Hausmann
- JKI, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Javier Ibáñez
- ICVV, CSIC, Universidad de La Rioja, Gobierno de la Rioja, Logroño, Spain
| | | | | | | | - Erika Maul
- JKI, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Maharajah Ponnaiah
- EPGV, Univ Paris-Saclay, CEA, IG-CNG, INRA, Evry, France.,LBD, Univ UPMC, CNRS, INSERM, Paris, France
| | - Reinhard Töpfer
- JKI, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Jean-Pierre Péros
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Michel Boursiquot
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,INRA Unité Expérimentale de Vassal, Centre de Ressources Biologiques de la Vigne, Marseillan-plage, France
| |
Collapse
|
5
|
Robinson G, Chalmers RM. Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis. Exp Parasitol 2012; 132:200-15. [PMID: 22781277 DOI: 10.1016/j.exppara.2012.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 11/29/2022]
Abstract
The use of high resolution molecular tools to study Cryptosporidium parvum and Cryptosporidium hominis intra-species variation is becoming common practice, but there is currently no consensus in the methods used. The most commonly applied tool is partial gp60 gene sequence analysis. However, multi-locus schemes are acknowledged to improve resolution over analysis of a single locus, which neglects potential re-assortment of genes during the sexual phase of the Cryptosporidium life-cycle. Multi-locus markers have been investigated in isolates from a variety of sampling frames, in varying combinations and using different assays and methods of analysis. To identify the most informative markers as candidates for the development of a standardised multi-locus fragment size-based typing (MLFT) scheme to integrate with epidemiological analyses, we examined the published literature. A total of 31 MLFT studies were found, employing 55 markers of which 45 were applied to both C. parvum and C. hominis. Of the studies, 11 had sufficient raw data, from three or more markers, and a sampling frame containing at least 50 samples, for meaningful in-depth analysis using assessment criteria based on the sampling frame, study size, number of markers investigated in each study, marker characteristics (>2 nucleotide repeats) and the combinations of markers generating all possible multi-locus genotypes. Markers investigated differed between C. hominis and C. parvum. When each scheme was analysed for the fewest markers required to identify 95% of all MLFTs, some redundancy was identified in all schemes; an average redundancy of 40% for C. hominis and 27% for C. parvum. Ranking markers, based on the most productive combinations, identified two different sets of potentially most informative candidate markers, one for each species. These will be subjected to technical evaluation including typability (percentage of samples generating a complete multi-locus type) and discriminatory power by direct fragment size analysis and analysed for correlation with epidemiological data in suitable sampling frames. The establishment of a group of users and agreed subtyping scheme for improved epidemiological and public health investigations of C. parvum and C. hominis will facilitate further developments and consideration of technological advances in a harmonised manner.
Collapse
Affiliation(s)
- Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea SA2 8QA, UK
| | | |
Collapse
|