1
|
van den Bosch QCC, de Klein A, Verdijk RM, Kiliç E, Brosens E. Uveal melanoma modeling in mice and zebrafish. Biochim Biophys Acta Rev Cancer 2024; 1879:189055. [PMID: 38104908 DOI: 10.1016/j.bbcan.2023.189055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Despite extensive research and refined therapeutic options, the survival for metastasized uveal melanoma (UM) patients has not improved significantly. UM, a malignant tumor originating from melanocytes in the uveal tract, can be asymptomatic and small tumors may be detected only during routine ophthalmic exams; making early detection and treatment difficult. UM is the result of a number of characteristic somatic alterations which are associated with prognosis. Although UM morphology and biology have been extensively studied, there are significant gaps in our understanding of the early stages of UM tumor evolution and effective treatment to prevent metastatic disease remain elusive. A better understanding of the mechanisms that enable UM cells to thrive and successfully metastasize is crucial to improve treatment efficacy and survival rates. For more than forty years, animal models have been used to investigate the biology of UM. This has led to a number of essential mechanisms and pathways involved in UM aetiology. These models have also been used to evaluate the effectiveness of various drugs and treatment protocols. Here, we provide an overview of the molecular mechanisms and pharmacological studies using mouse and zebrafish UM models. Finally, we highlight promising therapeutics and discuss future considerations using UM models such as optimal inoculation sites, use of BAP1mut-cell lines and the rise of zebrafish models.
Collapse
Affiliation(s)
- Quincy C C van den Bosch
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section of Ophthalmic Pathology, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Lapadula D, Lam B, Terai M, Sugase T, Tanaka R, Farias E, Kadamb R, Lopez-Anton M, Heine CC, Modasia B, Aguirre-Ghiso JA, Aplin AE, Sato T, Benovic JL. IGF1R Inhibition Enhances the Therapeutic Effects of Gq/11 Inhibition in Metastatic Uveal Melanoma Progression. Mol Cancer Ther 2023; 22:63-74. [PMID: 36223548 PMCID: PMC9812929 DOI: 10.1158/1535-7163.mct-22-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 10/06/2022] [Indexed: 02/03/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumor in adults, and up to 50% of patients develop metastatic disease, which remains uncurable. Because patients with metastatic UM have an average survival of less than 1 year after diagnosis, there is an urgent need to develop new treatment strategies. Although activating mutations in Gαq or Gα11 proteins are major drivers of pathogenesis, the therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating UM, possibly due to alternative signaling pathways and/or resistance mechanisms. Activation of the insulin-like growth factor 1 (IGF1) signaling pathway promotes cell growth, metastasis, and drug resistance in many types of cancers, including UM, where expression of the IGF1 receptor (IGF1R) correlates with a poor prognosis. In this article, we show that direct inhibition of Gαq/11 by the cyclic depsipeptide YM-254890 in combination with inhibition of IGF1R by linsitinib cooperatively inhibits downstream signaling and proliferation of UM cells. We further demonstrate that a 2-week combination treatment of 0.3 to 0.4 mg/kg of YM-254890 administered by intraperitoneal injection and 25 to 40 mg/kg linsitinib administered by oral gavage effectively inhibits the growth of metastatic UM tumors in immunodeficient NOD scid gamma (NSG) mice and identifies the IGF1 pathway as a potential resistance mechanism in response to Gαq/11 inhibition in UM. These data suggest that the combination of Gαq/11 and IGF1R inhibition provides a promising therapeutic strategy to treat metastatic UM.
Collapse
Affiliation(s)
- Dominic Lapadula
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Bao Lam
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Mizue Terai
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Takahito Sugase
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryota Tanaka
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Eduardo Farias
- Icahn School of Medicine at Mount, New York, NY, United States
| | - Rama Kadamb
- Albert Einstein College of Medicine, Bronx, NewYork, United States
| | | | - Christian C Heine
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | | | | | - Andrew E Aplin
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Takami Sato
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Jeffrey L Benovic
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Gu L, Ma G, Li C, Lin J, Zhao G. New insights into the prognosis of intraocular malignancy: Interventions for association mechanisms between cancer and diabetes. Front Oncol 2022; 12:958170. [PMID: 36003786 PMCID: PMC9393514 DOI: 10.3389/fonc.2022.958170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
The intraocular malignancies, which mostly originate from the retina and uvea, exhibit a high incidence of blindness and even death. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular malignancies in adults and children, respectively. The high risks of distant metastases lead to an extremely poor prognosis. Nowadays, various epidemiological studies have demonstrated that diabetes is associated with the high incidence and mortality of cancers, such as liver cancer, pancreatic cancer, and bladder cancer. However, the mechanisms and interventions associated with diabetes and intraocular malignancies have not been reviewed. In this review, we have summarized the associated mechanisms between diabetes and intraocular malignancy. Diabetes mellitus is a chronic metabolic disease characterized by prolonged periods of hyperglycemia. Recent studies have reported that the abnormal glucose metabolism, insulin resistance, and the activation of the IGF/insulin-like growth factor-1 receptor (IGF-1R) signaling axis in diabetes contribute to the genesis, growth, proliferation, and metastases of intraocular malignancy. In addition, diabetic patients are more prone to suffer severe complications and poor prognosis after radiotherapy for intraocular malignancy. Based on the common pathogenesis shared by diabetes and intraocular malignancy, they may be related to interventions and treatments. Therefore, interventions targeting the abnormal glucose metabolism, insulin resistance, and IGF-1/IGF-1R signaling axis show therapeutic potentials to treat intraocular malignancy.
Collapse
Affiliation(s)
- Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guofeng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Guiqiu Zhao,
| |
Collapse
|
4
|
Comito F, Marchese PV, Ricci AD, Tober N, Peterle C, Sperandi F, Melotti B. Systemic and liver-directed therapies in metastatic uveal melanoma: state-of-the-art and novel perspectives. Future Oncol 2021; 17:4583-4606. [PMID: 34431316 DOI: 10.2217/fon-2021-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metastatic uveal melanoma (MUM) is the most common form of noncutaneous melanoma. It is different from its cutaneous counterpart and is characterized by a very poor prognosis. Despite groundbreaking improvements in the treatment of cutaneous melanoma, there have been few advances in the treatment of MUM, and standard treatments for MUM have not been defined. We performed a systematic review focusing our attention on all interventional studies, ongoing or already published, concerning the treatment of MUM. We present results from studies of chemotherapy, targeted therapy, immunotherapy and liver-directed therapies. Although the results in this setting have been disappointing until now, trials investigating novel immunotherapeutic strategies alone and in combination with targeted agents and liver-directed therapies are ongoing.
Collapse
Affiliation(s)
- Francesca Comito
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna.,Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Paola Valeria Marchese
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Angela Dalia Ricci
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Nastassja Tober
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Chiara Peterle
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Francesca Sperandi
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Barbara Melotti
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| |
Collapse
|
5
|
Croce M, Ferrini S, Pfeffer U, Gangemi R. Targeted Therapy of Uveal Melanoma: Recent Failures and New Perspectives. Cancers (Basel) 2019; 11:E846. [PMID: 31216772 PMCID: PMC6628160 DOI: 10.3390/cancers11060846] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Among Uveal Melanoma (UM) driver mutations, those involving GNAQ or GNA11 genes are the most frequent, while a minor fraction of tumors bears mutations in the PLCB4 or CYSLTR2 genes. Direct inhibition of constitutively active oncoproteins deriving from these mutations is still in its infancy in UM, whereas BRAFV600E-targeted therapy has obtained relevant results in cutaneous melanoma. However, UM driver mutations converge on common downstream signaling pathways such as PKC/MAPK, PI3K/AKT, and YAP/TAZ, which are presently considered as actionable targets. In addition, BAP1 loss, which characterizes UM metastatic progression, affects chromatin structure via histone H2A deubiquitylation that may be counteracted by histone deacetylase inhibitors. Encouraging results of preclinical studies targeting signaling molecules such as MAPK and PKC were unfortunately not confirmed in early clinical studies. Indeed, a general survey of all clinical trials applying new targeted and immune therapy to UM displayed disappointing results. This paper summarizes the most recent studies of UM-targeted therapies, analyzing the possible origins of failures. We also focus on hyperexpressed molecules involved in UM aggressiveness as potential new targets for therapy.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | | - Ulrich Pfeffer
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | |
Collapse
|
6
|
Subbotin VM. Privileged portal metastasis of hepatocellular carcinoma in light of the coevolution of a visceral portal system and liver in the chordate lineage: a search for therapeutic targets. Drug Discov Today 2018; 23:548-564. [PMID: 29330122 DOI: 10.1016/j.drudis.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/21/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) disseminates systemically, but metastases occur in distant organs only in minority of patients, whereas HCC routinely metastasizes to liver and its vessels. HCC cells disseminate via hepatic veins, but portal veins are affected by metastasis more frequently than are hepatic veins, and correlates with poor prognosis. In this review, I suggest that privileged HCC portal metastasis occurs because of high levels of pancreatic family hormones and growth factors (PHGFs) in the portal blood. The analysis suggests that the appearance of the portal system carrying PHGFs in the evolution of invertebrate chordate (Amphioxus) led to the evolution of the liver in vertebrate; given that the portal pattern of HCC metastasis and selection of more-aggressive clones are PHGF dependent, PHGFs and their ligands constitute therapeutic targets.
Collapse
Affiliation(s)
- Vladimir M Subbotin
- Department of Oncology, University of Wisconsin, Madison, WI 53705, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
7
|
Li Y, Wang X. Role of long noncoding RNAs in malignant disease (Review). Mol Med Rep 2015; 13:1463-9. [PMID: 26708950 DOI: 10.3892/mmr.2015.4711] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/24/2015] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are endogenous transcribed RNA molecules without protein-coding potential, ranging between 200 and 100,000 nt in length. LncRNAs regulate the expression of specific genes in several ways, including guiding chromatin-remodeling, and affecting splicing, transcription or translation. The mutations and dysregulation of lncRNAs have been found to be important in various human diseases, but particularly in human cancer. Previous studies have demonstrated that changes to lncRNAs are closely associated with tumorigenesis, metastasis, prognosis and diagnosis. The current review aims to present a brief overview of the associated reports of lncRNAs in malignant neoplasms, including breast cancer, prostate cancer and hematological malignancies. LncRNAs may be evaluated as novel markers in disease diagnosis, and as prospective therapeutic targets for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
8
|
Expression of Insulin-like Growth Factor-1 Receptor in Conventional Cutaneous Squamous Cell Carcinoma With Different Histological Grades of Differentiation. Am J Dermatopathol 2014; 36:807-11. [DOI: 10.1097/dad.0000000000000120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Loss of androgen receptor promotes adipogenesis but suppresses osteogenesis in bone marrow stromal cells. Stem Cell Res 2013; 11:938-50. [PMID: 23859805 DOI: 10.1016/j.scr.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 11/21/2022] Open
Abstract
Gender differences have been described in osteoporosis with females having a higher risk of osteoporosis than males. The differentiation of bone marrow stromal cells (BMSCs) into bone or fat is a critical step for osteoporosis. Here we demonstrated that loss of the androgen receptor (AR) in BMSCs suppressed osteogenesis but promoted adipogenesis. The mechanism dissection studies revealed that AR deficiency suppressed osteogenesis-related genes to inhibit osteoblast differentiation from BMSCs. Knockout of AR promoted adipogenesis of BMSCs via Akt activation through IGFBP3-mediated IGF signaling, and the 5' promoter assay and chromatin immunoprecipitation assays further proved that AR could modulate IGFBP3 expression at the transcriptional level. Finally, addition of IGF inhibitors successfully masked the AR deficiency-induced Akt activation, and inhibitions of Akt, IGF1, and IGF2 pathways reversed the AR depletion effects on the adipogenesis process. These results suggested that AR-mediated changes in IGFBP3 might modulate the IGF-Akt axis to regulate adipogenesis in BMSCs.
Collapse
|
10
|
c-Met, epidermal growth factor receptor, and insulin-like growth factor-1 receptor are important for growth in uveal melanoma and independently contribute to migration and metastatic potential. Melanoma Res 2012; 22:123-32. [PMID: 22343486 DOI: 10.1097/cmr.0b013e3283507ffd] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Uveal melanoma (UM) has a high propensity to develop hepatic metastases. We sought to define the mechanisms required for preferential liver homing and to understand further the biologic behavior of this disease. The Met tyrosine kinase receptor and its ligand hepatocyte growth factor are expressed in hepatocytes. We therefore considered Met/hepatocyte growth factor signaling as a candidate migration/growth factor for UM cells. We further explored the relationship between c-Met and other growth factor receptors prevalent in the liver and their roles in UM metastatic potential. UM cell lines were evaluated for c-Met, epidermal growth factor receptor (EGFR), and insulin-like growth factor-1R (IGF-1R) expression by immunoblotting, and gene amplification by comparative genomic hybridization and fluorescence in-situ hybridization. High c-Met, phosphorylated c-Met, and EGFR expression were noted in two of nine cell lines, independent of IGF-1R levels. Knockdown of c-Met decreased proliferation of high c-Met-expressing UM cells but did not induce apoptosis. Selective inhibitors of EGFR and IGF-1R decreased proliferation and induced apoptosis in UM cells regardless of the expression levels of c-Met, EGFR, and IGF-1R. Although c-Met, EGFR, and IGF-1R play proliferative roles, EGFR and IGF-1R are also critical for UM cell survival. High c-Met/EGFR-expressing cell lines possessed the greatest migration potential. c-Met knockdown and selective inhibitors of c-Met, EGFR, and IGF-1R revealed independent contribution of these receptors to migration. UM can be categorized by levels of c-Met and EGFR expression which are associated with migratory/invasiveness responses to soluble factors present at high levels in the liver. This provides biologic relevance for UM clinical behavior with potential therapeutic implications.
Collapse
|
11
|
Clayburgh DR, Gross ND, Proby C, Koide J, Wong MH. Effects of epidermal growth factor receptor and insulin-like growth factor 1 receptor inhibition on proliferation and intracellular signaling in cutaneous SCCHN: potential for dual inhibition as a therapeutic modality. Head Neck 2012; 35:86-93. [PMID: 22495823 DOI: 10.1002/hed.22936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2011] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Combined inhibition of epidermal growth factor receptor (EGFR) and insulin-like growth factor-1 receptor (IGF-1R) has been proposed as a therapy for cutaneous squamous cell carcinoma of the head and neck (SCCHN). METHODS Receptor expression and downstream signaling were assessed in cutaneous squamous cell carcinoma (SCC) cell lines and patient samples. EGFR and IGF-1R signaling was inhibited in cutaneous SCC cell lines using erlotinib and/or picropodophyllin. RESULTS EGFR and IGF-1R were overexpressed in cutaneous SCCHN specimens relative to normal skin. Dual inhibition of both receptors prevented cell growth and decreased activation of Akt and p42/44 mitogen-activated protein kinase (MAPK) more effectively than either inhibitor alone. CONCLUSION Dual inhibition of EGFR and IGF-1R is effective at blocking cell growth, and is correlated with inhibition of Akt and p42/44 MAPK, suggesting that this may be a promising treatment for cutaneous SCCHN.
Collapse
Affiliation(s)
- Daniel R Clayburgh
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
12
|
Patel M, Smyth E, Chapman PB, Wolchok JD, Schwartz GK, Abramson DH, Carvajal RD. Therapeutic implications of the emerging molecular biology of uveal melanoma. Clin Cancer Res 2011; 17:2087-100. [PMID: 21444680 DOI: 10.1158/1078-0432.ccr-10-3169] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uveal melanoma represents the most common primary intraocular malignancy in adults. Although uveal and cutaneous melanomas both arise from melanocytes, uveal melanoma is clinically and biologically distinct from its more common cutaneous counterpart. Metastasis occurs frequently in this disease, and once distant spread occurs, outcomes are poor. No effective systemic therapies are currently available; however, recent advances in our understanding of the biology of this rare and devastating disease, combined with the growing availability of targeted agents, which can be used to rationally exploit these findings, hold the promise for novel and effective therapies in the foreseeable future. Herein, we review our rapidly growing understanding of the molecular biology of uveal melanoma, including the pathogenic roles of GNAQ (guanine nucleotide binding protein q polypeptide)/11, PTEN (phosphatase and tensin homolog), IGF (insulin-like growth factor)/IGF-1 receptor, MET (hepatocyte growth factor), BAP1 [breast cancer 1, early onset (BRCA1)-associated protein-1], and other key molecules, potential therapeutic strategies derived from this emerging biology, and the next generation of recently initiated clinical trials for the treatment of advanced uveal melanoma.
Collapse
Affiliation(s)
- Mrinali Patel
- Department of Medicine and Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Cooper A, van Doorninck J, Ji L, Russell D, Ladanyi M, Shimada H, Krailo M, Womer RB, Hsu JHR, Thomas D, Triche TJ, Sposto R, Lawlor ER. Ewing tumors that do not overexpress BMI-1 are a distinct molecular subclass with variant biology: a report from the Children's Oncology Group. Clin Cancer Res 2010; 17:56-66. [PMID: 21047978 DOI: 10.1158/1078-0432.ccr-10-1417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Ewing sarcoma family tumors (ESFT) are aggressive tumors of putative stem cell origin for which prognostic biomarkers and novel treatments are needed. In several human cancers, high expression of the polycomb protein BMI-1 is associated with poor outcome. We have assessed the potential clinical significance of BMI-1 expression level in ESFT. EXPERIMENTAL DESIGN BMI-1 expression was assessed in 130 tumors by immunostaining and associations with clinical features and outcome determined. The molecular signatures of BMI-1-low and BMI-1-high tumors were compared using microarrays and differentially activated canonical pathways identified by gene-specific enrichment analysis. Automated quantitative analysis of phosphoproteins was used to assess relative levels of pathway activation. Sensitivity to IGF1-R inhibition was determined using MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assays. RESULTS BMI-1 is overexpressed by the vast majority of ESFTs. However, in 20% of cases, BMI-1 levels are low to undetectable. Significantly, although clinical presentation and outcome were similar between BMI-1-high and BMI-1-low tumors, whole genome expression array analysis showed marked differences in their respective gene expression profiles. Gene-specific enrichment analysis identified that several cancer-associated canonical biological pathways, including IGF1, mTOR, and WNT, are significantly downregulated in BMI-1-low compared with BMI-1-high tumors. Consistent with these in vivo data, the response to IGF1-R inhibition in vitro was diminished in BMI-1-low compared with BMI-1-high ESFT cells. CONCLUSION ESFT that do not overexpress BMI-1 represent a novel subclass with a distinct molecular profile and altered activation of and dependence on cancer-associated biological pathways.
Collapse
Affiliation(s)
- Aaron Cooper
- Division of Hematology-Oncology, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kirkegaard SS, Lambert IH, Gammeltoft S, Hoffmann EK. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation. Am J Physiol Cell Physiol 2010; 299:C844-53. [PMID: 20631251 DOI: 10.1152/ajpcell.00024.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The swelling-activated K(+) currents (I(K,vol)) in Ehrlich ascites tumor cells (EATC) has been reported to be through the two-pore domain (K(2p)), TWIK-related acid-sensitive K(+) channel 2 (TASK-2). The regulatory volume decrease (RVD), following hypotonic exposure in EATC, is rate limited by I(K,vol) indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel to a lower cell volume. Swelling-activated K(+) efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium, it is demonstrated that mpV(pic) increased the volume-sensitive part of the K(+) efflux 1.3 times. To exclude K(+) efflux via a KCl cotransporter, cellular Cl(-) was substituted with NO(3)(-). Also under these conditions K(+) efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved in the activation of the volume-sensitive K(+) channel, whereas tyrosine phosphatases appears to be involved in inactivation of the channel. Overexpressing TASK-2 in human embryonic kidney (HEK)-293 cells increased the RVD rate and reduced the volume set point. TASK-2 has tyrosine sites, and precipitation of TASK-2 together with Western blotting and antibodies against phosphotyrosines revealed a cell swelling-induced, time-dependent tyrosine phosphorylation of the channel. Even though we found an inhibiting effect of PP2 on RVD, neither Src nor the focal adhesion kinase (FAK) seem to be involved. Inhibitors of the epidermal growth factor receptor tyrosine kinases had no effect on RVD, whereas the Janus kinase (JAK) inhibitor cucurbitacin inhibited the RVD by 40%. It is suggested that the cytokine receptor-coupled JAK/STAT pathway is upstream of the swelling-induced phosphorylation and activation of TASK-2 in EATC.
Collapse
Affiliation(s)
- Signe Skyum Kirkegaard
- Section of Cell and Developmental Biology, Dept. of Biology, The August Krogh Bldg, Univ. of Copenhagen, 13, Universitetsparken, DK-2100, Copenhagen, Denmark
| | | | | | | |
Collapse
|