1
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
2
|
Wani SQ, Dar IA, Khan T, Lone MM, Afroz F. Radiation Therapy and its Effects Beyond the Primary Target: An Abscopal Effect. Cureus 2019; 11:e4100. [PMID: 31057994 PMCID: PMC6476619 DOI: 10.7759/cureus.4100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy (RT) has been used for the treatment of various malignancies since decades with curative or palliative intent. RT for primary disease is often used with curative intent while its use in metastatic settings has been essentially palliative. However, in certain malignancies with metastatic disease, RT to primary disease has led to the regression of not only the primary site but also of the metastatic sites, a phenomenon known as "abscopal effect." Keeping in view the positive effects of RT beyond the primary site, we review the clinical utility of RT regarding its abscopal effect.
Collapse
Affiliation(s)
- Shaqul Qamar Wani
- Radiation Oncology, Sher I Kashmir Institute of Medical Sciences, Srinagar, IND
| | - Ishtiyaq A Dar
- Radiation Oncology, Sher I Kashmir Institute of Medical Sciences, Srinagar, IND
| | - Talib Khan
- Anesthesiology, Sher I Kashmir Institute of Medical Sciences, Srinagar, IND
| | - Mohammad M Lone
- Radiation Oncology, Sher I Kashmir Institute of Medical Sciences, Srinagar, IND
| | - Fir Afroz
- Radiation Oncology, Sher I Kashmir Institute of Medical Sciences, Srinagar, IND
| |
Collapse
|
3
|
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome 2018; 29:843-865. [PMID: 30178305 PMCID: PMC6267675 DOI: 10.1007/s00335-018-9777-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
Abstract
Radiation is an important component of cancer treatment with more than half of all patients receive radiotherapy during their cancer experience. While the impact of radiation on tumour morphology is routinely examined in the pre-clinical and clinical setting, the impact of radiation on the tumour microenvironment and more specifically the inflammatory/immune response is less well characterised. Inflammation is a key contributor to short- and long-term cancer eradication, with significant tumour and normal tissue consequences. Therefore, the role of radiation in modulating the inflammatory response is highly topical given the current wave of targeted and immuno-therapeutic treatments for cancer. This review provides a general overview of how radiation modulates the inflammatory and immune response—(i) how radiation induces the inflammatory/immune system, (ii) the cellular changes that take place, (iii) how radiation dose delivery affects the immune response, and (iv) a discussion on research directions to improve patient survival, reduce side effects, improve quality of life, and reduce financial costs in the immediate future. Harnessing the benefits of radiation on the immune response will enhance its maximal therapeutic benefit and reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia. .,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia. .,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia.,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michael Back
- Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Tom Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Connie I Diakos
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
4
|
Rashid M, Heikkonen J, Singh AD, Kivelä TT. Clinical Predictors of Regression of Choroidal Melanomas after Brachytherapy: A Growth Curve Model. Ophthalmology 2018; 125:747-754. [PMID: 29499831 DOI: 10.1016/j.ophtha.2018.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/09/2017] [Accepted: 01/23/2018] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To build multivariate models to assess correctly and efficiently the contribution of tumor characteristics on the rate of regression of choroidal melanomas after brachytherapy in a way that adjusts for confounding and takes into account variation in tumor regression patterns. DESIGN Modeling of longitudinal observational data. PARTICIPANTS Ultrasound images from 330 of 388 consecutive choroidal melanomas (87%) irradiated from 2000 through 2008 at the Helsinki University Hospital, Helsinki, Finland, a national referral center. METHODS Images were obtained with a 10-MHz B-scan during 3 years of follow-up. Change in tumor thickness and cross-sectional area were modeled using a polynomial growth-curve function in a nested mixed linear regression model considering regression pattern and tumor levels. Initial tumor dimensions, tumor-node-metastasis (TNM) stage, shape, ciliary body involvement, pigmentation, isotope, plaque size, detached muscles, and radiation parameters were considered as covariates. MAIN OUTCOME MEASURES Covariates that independently predict tumor regression. RESULTS Initial tumor thickness, largest basal diameter, ciliary body involvement, TNM stage, tumor shape group, break in Bruch's membrane, having muscles detached, and radiation dose to tumor base predicted faster regression, whether considering all tumors or those that regressed in a pattern compatible with exponential decay. Dark brown pigmentation was associated with slower regression. In multivariate modeling, initial tumor thickness remained the predominant and robust predictor of tumor regression (P < 0.0001). In addition, use of ruthenium isotope as opposed to iodine isotope (P = 0.018) independently contributed to faster regression of tumor thickness. For both isotopes considered alone, initial tumor thickness was the sole clinical predictor of regression (P < 0.0001). CONCLUSIONS Regression of choroidal melanoma after brachytherapy was associated with several clinical tumor and treatment parameters, most of which were shown to reflect initial tumor size. An independent predictor of regression of tumor thickness was the isotope used. These 2 covariates need to be adjusted for when exploring the associations with the rate of regression of histopathologic or genetic features of the tumor. Our model allows such future analyses efficiently without matching.
Collapse
Affiliation(s)
- Mamunur Rashid
- Ocular Oncology Service, Department of Ophthalmology University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Jorma Heikkonen
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arun D Singh
- Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Wu Q, Allouch A, Martins I, Modjtahedi N, Deutsch E, Perfettini JL. Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomed J 2017; 40:200-211. [PMID: 28918908 PMCID: PMC6136289 DOI: 10.1016/j.bj.2017.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/01/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France; Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Nazanine Modjtahedi
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France.
| |
Collapse
|
6
|
Hu ZI, McArthur HL, Ho AY. The Abscopal Effect of Radiation Therapy: What Is It and How Can We Use It in Breast Cancer? CURRENT BREAST CANCER REPORTS 2017; 9:45-51. [PMID: 28344743 PMCID: PMC5346418 DOI: 10.1007/s12609-017-0234-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The abscopal effect refers to the ability of localized radiation to trigger systemic antitumor effects. Over the past 50 years, reports on the abscopal effect arising from conventional radiation have been relatively rare. However, with the continued development and use of immunotherapy strategies incorporating radiotherapy with targeted immunomodulators and immune checkpoint blockade, the abscopal effect is becoming increasingly relevant in less immunogenic tumors such as breast cancer. Here, we review the mechanism of the abscopal effect, the current preclinical and clinical data, and the application of the abscopal effect in designing clinical trials of immunotherapy combined with radiotherapy in breast cancer.
Collapse
Affiliation(s)
- Zishuo I. Hu
- Icahn School of Medicine, Mount Sinai Health System, New York, NY USA
| | - Heather L. McArthur
- Department of Medicine, Cedars-Sinai Medical Center, Breast Oncology, Los Angeles, CA USA
| | - Alice Y. Ho
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA USA
| |
Collapse
|
7
|
Abstract
Uveal melanoma (UM), a rare cancer of the eye, is distinct from cutaneous melanoma by its etiology, the mutation frequency and profile, and its clinical behavior including resistance to targeted therapy and immune checkpoint blockers. Primary disease is efficiently controlled by surgery or radiation therapy, but about half of UMs develop distant metastasis mostly to the liver. Survival of patients with metastasis is below 1 year and has not improved in decades. Recent years have brought a deep understanding of UM biology characterized by initiating mutations in the G proteins GNAQ and GNA11. Cytogenetic alterations, in particular monosomy of chromosome 3 and amplification of the long arm of chromosome 8, and mutation of the BRCA1-associated protein 1, BAP1, a tumor suppressor gene, or the splicing factor SF3B1 determine UM metastasis. Cytogenetic and molecular profiling allow for a very precise prognostication that is still not matched by efficacious adjuvant therapies. G protein signaling has been shown to activate the YAP/TAZ pathway independent of HIPPO, and conventional signaling via the mitogen-activated kinase pathway probably also contributes to UM development and progression. Several lines of evidence indicate that inflammation and macrophages play a pro-tumor role in UM and in its hepatic metastases. UM cells benefit from the immune privilege in the eye and may adopt several mechanisms involved in this privilege for tumor escape that act even after leaving the niche. Here, we review the current knowledge of the biology of UM and discuss recent approaches to UM treatment.
Collapse
Affiliation(s)
- Adriana Amaro
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Rosaria Gangemi
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Francesca Piaggio
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Giovanna Angelini
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Gaia Barisione
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Ulrich Pfeffer
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
8
|
Batson SA, Breazzano MP, Milam RW, Shinohara E, Johnson DB, Daniels AB. Rationale for Harnessing the Abscopal Effect as Potential Treatment for Metastatic Uveal Melanoma. Int Ophthalmol Clin 2017; 57:41-48. [PMID: 27898612 DOI: 10.1097/iio.0000000000000152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
9
|
A melanin-bleaching methodology for molecular and histopathological analysis of formalin-fixed paraffin-embedded tissue. J Transl Med 2016; 96:1116-27. [PMID: 27548802 PMCID: PMC7781076 DOI: 10.1038/labinvest.2016.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/28/2023] Open
Abstract
Removal of excessive melanin from heavily pigmented formalin-fixed paraffin-embedded (FFPE) melanoma tissues is essential for histomorphological and molecular diagnostic assessments. Although there have been efforts to address this issue, current methodologies remain complex and time-consuming, and are not suitable for multiple molecular applications. Herein, we have developed a robust and rapid melanin-bleaching methodology for FFPE tissue specimens. Our approach is based on quick bleaching (15 min) at high temperature (80 °C) with 0.5% diluted hydrogen peroxide (H2O2) in Tris-HCl, PBS, or Tris/Tricine/SDS buffer. Immunostaining for Ki-67 and HMB45 was enhanced by bleaching with 0.5% H2O2 in Tris/Tricine/SDS and Tris-HCl, respectively. In addition to histopathological applications, our approach also facilitates recovery of protein and nucleic acid from archival melanin-rich FFPE tissue sections. Protein extracted from bleached FFPE tissues was compatible with western blotting using anti-human GAPDH and AKT antibodies. Our bleaching condition significantly improved RNA quality compared with unbleached tissues without compromising the yield. Notably, the RNA/DNA obtained from bleached tissues was suitable for end point PCR and real-time quantitative RT-PCR. In conclusion, this improved melanin-bleaching method enhances and simplifies immunostaining procedures, and facilitates the use of melanin-rich FFPE tissues for histomorphological and PCR amplification-based molecular assays.
Collapse
|
10
|
Herter-Sprie GS, Koyama S, Korideck H, Hai J, Deng J, Li YY, Buczkowski KA, Grant AK, Ullas S, Rhee K, Cavanaugh JD, Neupane NP, Christensen CL, Herter JM, Makrigiorgos GM, Hodi FS, Freeman GJ, Dranoff G, Hammerman PS, Kimmelman AC, Wong KK. Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight 2016; 1:e87415. [PMID: 27699275 DOI: 10.1172/jci.insight.87415] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non-small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional Kras-driven genetically engineered mouse models (GEMMs) of NSCLC treated with radiotherapy and a programmed cell death 1 antibody (αPD-1). However, while αPD-1 therapy was beneficial when combined with RT in radiation-naive tumors, αPD-1 therapy had no antineoplastic efficacy in RT-relapsed tumors and further induced T cell inhibitory markers in this setting. Furthermore, there was differential efficacy of αPD-1 plus RT among Kras-driven GEMMs, with additional loss of the tumor suppressor serine/threonine kinase 11/liver kinase B1 (Stk11/Lkb1) resulting in no synergistic efficacy. Taken together, our data provide evidence for a close interaction among RT, T cells, and the PD-1/PD-L1 axis and underscore the rationale for clinical combinatorial therapy with immune modulators and radiotherapy.
Collapse
Affiliation(s)
- Grit S Herter-Sprie
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Shohei Koyama
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Vaccine Center
| | - Houari Korideck
- Division of Medical Physics and Biophysics, and.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Josephine Hai
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Jiehui Deng
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Yvonne Y Li
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Kevin A Buczkowski
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Aaron K Grant
- Division of MRI Research, Department of Radiology, and
| | - Soumya Ullas
- Longwood Small Animal Imaging Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Rhee
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Jillian D Cavanaugh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Neermala Poudel Neupane
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Camilla L Christensen
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Jan M Herter
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - G Mike Makrigiorgos
- Division of Medical Physics and Biophysics, and.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - F Stephen Hodi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gordon J Freeman
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Vaccine Center
| | - Glenn Dranoff
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Vaccine Center
| | - Peter S Hammerman
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Alec C Kimmelman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Vaccine Center.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Abstract
The discrepancy between the in vitro and in vivo response to radiation is readily explained by the fact that tumors do not exist independently of the host organism; cancer cells grow in the context of a complex microenvironment composed of stromal cells, vasculature, and elements of the immune system. As the antitumor effect of radiotherapy depends in part on the immune system, and myeloid-derived cells in the tumor microenvironment modulate the immune response to tumors, it follows that understanding the effect of radiation on myeloid cells in the tumor is likely to be essential for comprehending the antitumor effects of radiotherapy. In this review, we describe the phenotype and function of these myeloid-derived cells, and stress the complexity of studying this important cell compartment owing to its intrinsic plasticity. With regard to the response to radiation of myeloid cells in the tumor, evidence has emerged demonstrating that it is both model and dose dependent. Deciphering the effects of myeloid-derived cells in tumors, particularly in irradiated tumors, is key for attempting to pharmacologically modulate their actions in the clinic as part of cancer therapy.
Collapse
Affiliation(s)
- Ralph E Vatner
- Department of Radiation Oncology, New York University School of Medicine, New York, NY
| | - Silvia C Formenti
- Department of Radiation Oncology, New York University School of Medicine, New York, NY.
| |
Collapse
|
12
|
Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections. PLoS One 2014; 9:e102512. [PMID: 25025426 PMCID: PMC4099143 DOI: 10.1371/journal.pone.0102512] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose The removal of excessive melanin pigments that obscure ocular tissue morphology is important to address scientific questions and for differential diagnosis of ocular tumours based on histology. Thus, the goal of the present study was to establish an effective and fast melanin bleaching method for paraffin and frozen mouse and human ocular tissues. Methods Paraffin-embedded and frozen ocular specimens from mice and human donors were subjected to bleaching employing two methods. The first employed potassium permanganate (KMnO4) with oxalic acid, and the second 10% hydrogen peroxide (H2O2). To determine optimal bleaching conditions, depigmentation was carried out at various incubation times. The effect of diluents used for 10% H2O2 was assessed using phosphate-buffered saline (PBS), and deionized water. Three different slide types and two fixatives, which were ice-cold acetone with 80% methanol, and 4% paraformaldehyde (PFA) were used to determine the optimal conditions for better tissue adherence during bleaching. All tissues were stained in hematoxylin and eosin for histological evaluation. Results Optimal bleaching was achieved using warm 10% H2O2 diluted in PBS at 65°C for 120 minutes. Chromium-gelatin-coated slides prevented tissue detachment. Adherence of cryosections was also improved with post-fixation using 4% PFA and overnight air-drying at RT after cryosectioning. Tissue morphology was preserved under these conditions. Conversely, tissues bleached in KMnO4/oxalic acid demonstrated poor depigmentation with extensive tissue damage. Conclusions Warm dilute H2O2 at 65°C for 120 minutes rapidly and effectively bleached both cryo- and paraffin sections of murine and human ocular tissues.
Collapse
|
13
|
Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys 2014; 88:986-97. [PMID: 24661650 PMCID: PMC4667362 DOI: 10.1016/j.ijrobp.2013.08.035] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 01/12/2023]
Abstract
Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study.
Collapse
Affiliation(s)
- Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Michael A Postow
- Department of Medicine, Melanoma and Sarcoma Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Bronkhorst IHG, Jager MJ. Uveal melanoma: the inflammatory microenvironment. J Innate Immun 2012; 4:454-62. [PMID: 22302072 PMCID: PMC6741452 DOI: 10.1159/000334576] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/19/2011] [Indexed: 01/25/2023] Open
Abstract
Uveal melanoma is a highly malignant intraocular tumor with quite homogeneous tumor tissue and a diffuse leukocytic infiltration. In contrast with many other malignancies, the presence of infiltrating macrophages and T cells is associated with a poor prognosis rather than a good one. The clear link between inflammation and cancer in this malignancy provides a paradigm for macrophage plasticity and function. Macrophages in uveal melanoma have an M2-like phenotype and are associated with the loss of one specific chromosome - monosomy 3. The central players involved in this process and discussed in this review include macrophages, T lymphocytes, chemokines and cytokines, including the macrophage-attraction molecules. When a tumor acquires the ability to release significant amounts of macrophage-attraction molecules it causes the expansion of a population of myeloid immature cells that may not only help the tumor to suppress immune reactions but also aid in the construction of new blood vessels for tumor growth. A better understanding of the molecular basis of a local myelomonocytic cell population will bring a better understanding of the immunopathology of this disease and will lead to therapeutic interventions in uveal melanoma. This review focuses on the roles of the local inflammatory microenvironment in the development and progression of uveal melanoma.
Collapse
Affiliation(s)
- Inge H G Bronkhorst
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|