1
|
Neumaier F, Kotliar K, Haeren RHL, Temel Y, Lüke JN, Seyam O, Lindauer U, Clusmann H, Hescheler J, Schubert GA, Schneider T, Albanna W. Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice-An in-vivo Evaluation Using Retinal Vessel Analysis (RVA). Front Neurol 2021; 12:659890. [PMID: 33927686 PMCID: PMC8076560 DOI: 10.3389/fneur.2021.659890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Metabolic demand increases with neuronal activity and adequate energy supply is ensured by neurovascular coupling (NVC). Impairments of NVC have been reported in the context of several diseases and may correlate with disease severity and outcome. Voltage-gated Ca2+-channels (VGCCs) are involved in the regulation of vasomotor tone. In the present study, we compared arterial and venous responses to flicker stimulation in Cav2.3-competent (Cav2.3[+/+]) and -deficient (Cav2.3[-/-]) mice using retinal vessel analysis. Methods: The mice were anesthetized and the pupil of one eye was dilated by application of a mydriaticum. An adapted prototype of retinal vessel analyzer was used to perform dynamic retinal vessel analysis. Arterial and venous responses were quantified in terms of the area under the curve (AUCart/AUCven) during flicker application, mean maximum dilation (mMDart/mMDven) and time to maximum dilation (tMDart/tMDven) during the flicker, dilation at flicker cessation (DFCart/DFCven), mean maximum constriction (mMCart/mMCven), time to maximum constriction (tMCart/tMCven) after the flicker and reactive magnitude (RMart/RMven). Results: A total of 33 retinal scans were conducted in 22 Cav2.3[+/+] and 11 Cav2.3[-/-] mice. Cav2.3[-/-] mice were characterized by attenuated and partially reversed arterial and venous responses, as reflected in significantly lower AUCart (p = 0.031) and AUCven (p = 0.047), a trend toward reduced DFCart (p = 0.100), DFCven (p = 0.100), mMDven (p = 0.075), and RMart (p = 0.090) and a trend toward increased tMDart (p = 0.096). Conclusion: To our knowledge, this is the first study using a novel, non-invasive analysis technique to document impairment of retinal vessel responses in VGCC-deficient mice. We propose that Cav2.3 channels could be involved in NVC and may contribute to the impairment of vasomotor responses under pathophysiological conditions.
Collapse
Affiliation(s)
- Felix Neumaier
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | | | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jan Niklas Lüke
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Osama Seyam
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | - Ute Lindauer
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Tranlational Neurosurgery and Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Lüke JN, Neumaier F, Alpdogan S, Hescheler J, Schneider T, Albanna W, Akhtar-Schäfer I. Submicromolar copper (II) ions stimulate transretinal signaling in the isolated retina from wild type but not from Ca v2.3-deficient mice. BMC Ophthalmol 2020; 20:182. [PMID: 32375703 PMCID: PMC7201970 DOI: 10.1186/s12886-020-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/24/2020] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND So far, only indirect evidence exists for the pharmacoresistant R-type voltage-gated Ca2+ channel (VGCC) to be involved in transretinal signaling by triggering GABA-release onto ON-bipolar neurons. This release of inhibitory neurotransmitters was deduced from the sensitivity of the b-wave to stimulation by Ni2+, Zn2+ and Cu2+. To further confirm the interpretation of these findings, we compared the effects of Cu2+ application and chelation (using kainic acid, KA) on the neural retina from wildtype and Cav2.3-deficient mice. Furthermore, the immediately effect of KA on the ERG b-wave modulation was assessed. METHODS Transretinal signaling was recorded as an ERG from the superfused murine retina isolated from wildtype and Cav2.3-deficient mice. RESULTS In mice, the stimulating effect of 100 nM CuCl2 is absent in the retinae from Cav2.3-deficient mice, but prominent in Cav2.3-competent mice. Application of up to 3 mM tricine does not affect the murine b-wave in both genotypes, most likely because of chelating amino acids present in the murine nutrient solution. Application of 27 μM KA significantly increased the b-wave amplitude in wild type and Cav2.3 (-|-) mice. This effect can most likely be explained by the stimulation of endogenous KA-receptors described in horizontal, OFF-bipolar, amacrine or ganglion cells, which could not be fully blocked in the present study. CONCLUSION Cu2+-dependent modulation of transretinal signaling only occurs in the murine retina from Cav2.3 competent mice, supporting the ideas derived from previous work in the bovine retina that R-type Ca2+ channels are involved in shaping transretinal responses during light perception.
Collapse
Affiliation(s)
- Jan Niklas Lüke
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| | - Serdar Alpdogan
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany.
| | - Walid Albanna
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany. .,Department of Neurosurgery, University Hospital, RWTH Aachen, Aachen, Germany.
| | - Isha Akhtar-Schäfer
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| |
Collapse
|
3
|
Neumaier F, Akhtar-Schäfer I, Lüke JN, Dibué-Adjei M, Hescheler J, Schneider T. Reciprocal modulation of Ca v 2.3 voltage-gated calcium channels by copper(II) ions and kainic acid. J Neurochem 2018; 147:310-322. [PMID: 29972687 DOI: 10.1111/jnc.14546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
Kainic acid (KA) is a potent agonist at non-N-methyl-D-aspartate (non-NMDA) ionotropic glutamate receptors and commonly used to induce seizures and excitotoxicity in animal models of human temporal lobe epilepsy. Among other factors, Cav 2.3 voltage-gated calcium channels have been implicated in the pathogenesis of KA-induced seizures. At physiologically relevant concentrations, endogenous trace metal ions (Cu2+ , Zn2+ ) occupy an allosteric binding site on the domain I gating module of these channels and interfere with voltage-dependent gating. Using whole-cell patch-clamp recordings in human embryonic kidney (HEK-293) cells stably transfected with human Cav 2.3d and β3 -subunits, we identified a novel, glutamate receptor-independent mechanism by which KA can potently sensitize these channels. Our findings demonstrate that KA releases these channels from the tonic inhibition exerted by low nanomolar concentrations of Cu2+ and produces a hyperpolarizing shift in channel voltage-dependence by about 10 mV, thereby reconciling the effects of Cu2+ chelation with tricine. When tricine was used as a surrogate to study the receptor-independent action of KA in electroretinographic recordings from the isolated bovine retina, it selectively suppressed a late b-wave component, which we have previously shown to be enhanced by genetic or pharmacological ablation of Cav 2.3 channels. Although the pathophysiological relevance remains to be firmly established, we speculate that reversal of Cu2+ -induced allosteric suppression, presumably via formation of stable kainate-Cu2+ complexes, could contribute to the receptor-mediated excitatory effects of KA. In addition, we discuss experimental implications for the use of KA in vitro, with particular emphasis on the seemingly high incidence of trace metal contamination in common physiological solutions.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schäfer
- Institute for Neurophysiology, University of Cologne, Cologne, Germany.,Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, Cologne, Germany
| | - Jan Niklas Lüke
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Maxine Dibué-Adjei
- Institute for Neurophysiology, University of Cologne, Cologne, Germany.,Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Albanna W, Neumaier F, Lüke JN, Kotliar K, Conzen C, Lindauer U, Hescheler J, Clusmann H, Schneider T, Schubert GA. Unconjugated bilirubin modulates neuronal signaling only in wild-type mice, but not after ablation of the R-type/Ca v 2.3 voltage-gated calcium channel. CNS Neurosci Ther 2017; 24:222-230. [PMID: 29274300 DOI: 10.1111/cns.12791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION The relationship between blood metabolites and hemoglobin degradation products (BMHDPs) formed in the cerebrospinal fluid and the development of vasospasm and delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) has been the focus of several previous studies, but their molecular and cellular targets remain to be elucidated. METHODS Because BMHDP-induced changes in Cav 2.3 channel function are thought to contribute to DCI after aSAH, we studied their modulation by unconjugated bilirubin (UCB) in an organotypical neuronal network from wild-type (WT) and Cav 2.3-deficient animals (KO). Murine retinae were isolated from WT and KO and superfused with nutrient solution. Electroretinograms were recorded before, during, and after superfusion with UCB. Transretinal signaling was analyzed as b-wave, implicit time, and area under the curve (AUC). RESULTS Superfusion of UCB significantly attenuated the b-wave amplitude in the isolated retina from wild-type mice by 14.9% (P < 0.05), followed by gradual partial recovery (P = 0.09). Correspondingly, AUC decreased significantly with superfusion of UCB (P < 0.05). During washout, the b-wave amplitude returned to baseline (P = 0.2839). The effects of UCB were absent in Cav 2.3-deficient mice, lacking the expression of Cav 2.3 as proofed on the biochemical level. CONCLUSIONS Ex vivo neuronal recording in the murine retina is able to detect transient impairment of transretinal signaling by UCB in WT, but not in KO. This new model may be useful to further clarify the role of calcium channels in neuronal signal alteration in the presence of BHMDPs.
Collapse
Affiliation(s)
- Walid Albanna
- Institute for Neurophysiology, University of Cologne, Cologne, Germany.,Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Jan Niklas Lüke
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | - Catharina Conzen
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Ute Lindauer
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | |
Collapse
|
5
|
Albanna W, Lueke JN, Sjapic V, Kotliar K, Hescheler J, Clusmann H, Sjapic S, Alpdogan S, Schneider T, Schubert GA, Neumaier F. Electroretinographic Assessment of Inner Retinal Signaling in the Isolated and Superfused Murine Retina. Curr Eye Res 2017; 42:1518-1526. [DOI: 10.1080/02713683.2017.1339807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Walid Albanna
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Jan Niklas Lueke
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Volha Sjapic
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Sergej Sjapic
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Serdar Alpdogan
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Fujii M, Sunagawa GA, Kondo M, Takahashi M, Mandai M. Evaluation of micro Electroretinograms Recorded with Multiple Electrode Array to Assess Focal Retinal Function. Sci Rep 2016; 6:30719. [PMID: 27480484 PMCID: PMC4969741 DOI: 10.1038/srep30719] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/06/2016] [Indexed: 12/23/2022] Open
Abstract
Full-field electroretinograms (ERGs) are used to objectively assess the mass function of the retina, whereas focal ERGs are used to evaluate the focal retinal function. The purpose of this study was to determine the usefulness of a multiple electrode array (MEA) system for recording ex vivo micro ERGs (mERGs) together with multiunit spike responses of the retinal ganglion cells (RGCs) to assess focal retinal function in isolated mouse retinas. The a- and b-waves of the full-field ERGs were present in the mERG. The b-wave was blocked by L-AP4, an inhibitor of the mGluR6 receptor, and the OFF-component was blocked by exposure to PDA, an antagonist of ionotropic glutamate receptors, with a corresponding RGC responses. mERGs were also recorded from mice with progressive retinal degeneration, the C57BL/6J-Pde6brd1-2J/J (rd1) mice, from which conventional full-field ERGs are non-recordable. A blockade of the glutamate receptors indicated that the negative wave of rd1 mice do not originate from the photoreceptors but from the second or third order neurons. This technique of recording mERGs will be useful in assessing the focal properties of the retinas obtained from eyes with pathology and also to follow the recovery of the physiology of the retina in regenerative studies.
Collapse
Affiliation(s)
- Momo Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| |
Collapse
|
7
|
Siapich SA, Akhtar I, Hescheler J, Schneider T, Lüke M. Low concentrations of ethanol but not of dimethyl sulfoxide (DMSO) impair reciprocal retinal signal transduction. Graefes Arch Clin Exp Ophthalmol 2015; 253:1713-9. [PMID: 26104874 DOI: 10.1007/s00417-015-3070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The model of the isolated and superfused retina provides the opportunity to test drugs and toxins. Some chemicals have to be applied using low concentrations of organic solvents as carriers. Recently, E-/R-type (Cav2.3) and T-type (Cav3.2) voltage-gated Ca(2+) channels were identified as participating in reciprocal inhibitory retinal signaling. Their participation is apparent, when low concentrations of NiCl2 (15 μM) are applied during superfusion leading to an increase of the ERG b-wave amplitude, which is explained by a reduction of amacrine GABA-release onto bipolar neurons. During these investigations, differences were observed for the solvent carrier used. METHODS Recording of the transretinal receptor potentials from the isolated bovine retina. RESULTS The pretreatment of bovine retina with 0.01 % (v/v) dimethylsulfoxide did not impair the NiCl2-mediated increase of the b-wave amplitude, which was 1.31-fold ± 0.03 of initial value (n = 4). However, pretreatment of the retina with the same concentration of ethanol impaired reciprocal signaling (0.96-fold ± 0.05, n = 4). Further, the implicit time of the b-wave was increased, suggesting that ethanol itself but not DMSO may antagonize GABA-receptors. CONCLUSION Ethanol itself but not DMSO may block GABA receptors and cause an amplitude increase by itself, so that reciprocal signaling is impaired.
Collapse
Affiliation(s)
- Siarhei A Siapich
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, D-50931, Köln, Germany
- Department of Ophthalmology, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Isha Akhtar
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, D-50931, Köln, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, D-50931, Köln, Germany
| | - Toni Schneider
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, D-50931, Köln, Germany.
| | - Matthias Lüke
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, D-50931, Köln, Germany
- University Eye Hospital, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| |
Collapse
|
8
|
Cardiac functions of voltage-gated Ca(2+) channels: role of the pharmacoresistant type (E-/R-Type) in cardiac modulation and putative implication in sudden unexpected death in epilepsy (SUDEP). Rev Physiol Biochem Pharmacol 2014; 167:115-39. [PMID: 25280639 DOI: 10.1007/112_2014_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) are ubiquitous in excitable cells. These channels play key roles in many physiological events like cardiac regulation/pacemaker activity due to intracellular Ca(2+) transients. In the myocardium, the Cav1 subfamily (L-type: Cav1.2 and Cav1.3) is the main contributor to excitation-contraction coupling and/or pacemaking, whereas the Cav3 subfamily (T-type: Cav3.1 and Cav3.2) is important in rhythmically firing of the cardiac nodal cells. No established cardiac function has been attributed to the Cav2 family (E-/R-type: Cav2.3) despite accumulating evidence of cardiac dysregulation observed upon deletion of the Cav2.3 gene, the only member of this family so far detected in cardiomyocytes. In this review, we summarize the pathophysiological changes observed after ablation of the E-/R-type VGCC and propose a cardiac mechanism of action for this channel. Also, considering the role played by this channel in epilepsy and its reported sensitivity to antiepileptic drugs, a putative involvement of this channel in the cardiac mechanism of sudden unexpected death in epilepsy is also discussed.
Collapse
|
9
|
Bernard M, Dejos C, Bergès T, Régnacq M, Voisin P. Activation of rhodopsin gene transcription in cultured retinal precursors of chicken embryo: role of Ca2+
signaling and hyperpolarization-activated cation channels. J Neurochem 2013; 129:85-98. [DOI: 10.1111/jnc.12624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/13/2013] [Accepted: 11/22/2013] [Indexed: 11/29/2022]
|