1
|
Lungu CN, Creteanu A, Mehedinti MC. Endovascular Drug Delivery. Life (Basel) 2024; 14:451. [PMID: 38672722 PMCID: PMC11051410 DOI: 10.3390/life14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Drug-eluting stents (DES) and balloons revolutionize atherosclerosis treatment by targeting hyperplastic tissue responses through effective local drug delivery strategies. This review examines approved and emerging endovascular devices, discussing drug release mechanisms and their impacts on arterial drug distribution. It emphasizes the crucial role of drug delivery in modern cardiovascular care and highlights how device technologies influence vascular behavior based on lesion morphology. The future holds promise for lesion-specific treatments, particularly in the superficial femoral artery, with recent CE-marked devices showing encouraging results. Exciting strategies and new patents focus on local drug delivery to prevent restenosis, shaping the future of interventional outcomes. In summary, as we navigate the ever-evolving landscape of cardiovascular intervention, it becomes increasingly evident that the future lies in tailoring treatments to the specific characteristics of each lesion. By leveraging cutting-edge technologies and harnessing the potential of localized drug delivery, we stand poised to usher in a new era of precision medicine in vascular intervention.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| | - Andreea Creteanu
- Department of Pharmaceutical Technology, University of Medicine and Pharmacy Grigore T Popa, 700115 Iași, Romania
| | - Mihaela C. Mehedinti
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| |
Collapse
|
2
|
Lu K, Ye X, Chen Y, Wang P, Gong M, Xuan B, Tang Z, Li M, Hou J, Peng K, Pei H. Research progress of drug eluting balloon in arterial circulatory system. Front Cardiovasc Med 2024; 11:1287852. [PMID: 38601040 PMCID: PMC11005962 DOI: 10.3389/fcvm.2024.1287852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
The arterial circulatory system diseases are common in clinical practice, and their treatment options have been of great interest due to their high morbidity and mortality. Drug-eluting balloons, as a new type of endovascular interventional treatment option, can avoid the long-term implantation of metal stents and is a new type of angioplasty without stents, so drug-eluting balloons have better therapeutic effects in some arterial circulatory diseases and have been initially used in clinical practice. In this review, we first describe the development, process, and mechanism of drug-eluting balloons. Then we summarize the current studies on the application of drug-eluting balloons in coronary artery lesions, in-stent restenosis, and peripheral vascular disease. As well as the technical difficulties and complications in the application of drug-eluting balloons and possible management options, in order to provide ideas and help for future in-depth studies and provide new strategies for the treatment of more arterial system diseases.
Collapse
Affiliation(s)
- Keji Lu
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Xianglin Ye
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Yaoxuan Chen
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Meiting Gong
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Bing Xuan
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhaobing Tang
- Department of Rehabilitation, The General Hospital of Western Theater Command, Chengdu, China
| | - Meiling Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Chengdu, China
| | - Ke Peng
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Pei
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
3
|
Vallejo-Zamora JA, Vega-Cantu YI, Rodriguez C, Cordell GA, Rodriguez-Garcia A. Drug-Eluting, Bioresorbable Cardiovascular Stents─Challenges and Perspectives. ACS APPLIED BIO MATERIALS 2022; 5:4701-4717. [PMID: 36150217 DOI: 10.1021/acsabm.2c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Globally, the leading causes of natural death are attributed to coronary heart disease and type 1 and type 2 diabetes. High blood pressure levels, high cholesterol levels, smoking, and poor eating habits lead to the agglomeration of plaque in the arteries, reducing the blood flow. The implantation of devices used to unclog vessels, known as stents, sometimes results in a lack of irrigation due to the excessive proliferation of endothelial tissue within the blood vessels and is known as restenosis. The use of drug-eluting stents (DESs) to deliver antiproliferative drugs has led to the development of different encapsulation techniques. However, due to the potency of the drugs used in the initial stent designs, a chronic inflammatory reaction of the arterial wall known as thrombosis can cause a myocardial infarction (MI). One of the most promising drugs to reduce this risk is everolimus, which can be encapsulated in lipid systems for controlled release directly into the artery. This review aims to discuss the current status of stent design, fabrication, and functionalization. Variables such as the mechanical properties, metals and their alloys, drug encapsulation and controlled elution, and stent degradation are also addressed. Additionally, this review covers the use of polymeric surface coatings on stents and the recent advances in layer-by-layer coating and drug delivery. The advances in nanoencapsulation techniques such as liposomes and micro- and nanoemulsions and their functionalization in bioresorbable, drug-eluting stents are also highlighted.
Collapse
Affiliation(s)
- Julio A Vallejo-Zamora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Yadira I Vega-Cantu
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Ciro Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca, Nuevo León66629, Mexico
| | - Geoffrey A Cordell
- Natural Products, Inc., Evanston, Illinois60201, United States
- College of Pharmacy, University of Florida, Gainesville, Florida32610, United States
| | - Aida Rodriguez-Garcia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza, Nuevo León66455, Mexico
| |
Collapse
|
4
|
Su X, Rakshit M, Das P, Gupta I, Das D, Pramanik M, Ng KW, Kwan J. Ultrasonic Implantation and Imaging of Sound-Sensitive Theranostic Agents for the Treatment of Arterial Inflammation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24422-24430. [PMID: 34019376 DOI: 10.1021/acsami.1c01161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For site-specific diseases such as atherosclerosis, it is desirable to noninvasively and locally deliver therapeutics for extended periods of time. High-intensity focused ultrasound (HIFU) provides targeted drug delivery, yet remains unable to sustain delivery beyond the HIFU treatment time. Furthermore, methods to validate HIFU-enhanced drug delivery remain limited. In this study, we report on HIFU-targeted implantation of degradable drug-loaded sound-sensitive multicavity PLGA microparticles (mcPLGA MPs) as a theranostic agent for the treatment of arterial lesions. Once implanted into the targeted tissue, mcPLGA MPs eluted dexamethasone for several days, thereby reducing inflammatory markers linked to oxidized lipid uptake in a foam cell spheroid model. Furthermore, implanted mcPLGA MPs created hyperechoic regions on diagnostic ultrasound images, and thus noninvasively verified that the target region was treated with the theranostic agents. This novel and innovative multifunctional theranostic platform may serve as a promising candidate for noninvasive imaging and treatment for site-specific diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Su
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Prativa Das
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Ipshita Gupta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, CleanTech One, 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
5
|
Rykowska I, Nowak I, Nowak R. Drug-Eluting Stents and Balloons-Materials, Structure Designs, and Coating Techniques: A Review. Molecules 2020; 25:E4624. [PMID: 33050663 PMCID: PMC7594099 DOI: 10.3390/molecules25204624] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Controlled drug delivery is a matter of interest to numerous scientists from various domains, as well as an essential issue for society as a whole. In the treatment of many diseases, it is crucial to control the dosing of a drug for a long time and thus maintain its optimal concentration in the tissue. Heart diseases are particularly important in this aspect. One such disease is an obstructive arterial disease affecting millions of people around the world. In recent years, stents and balloon catheters have reached a significant position in the treatment of this condition. Balloon catheters are also successfully used to manage tear ducts, paranasal sinuses, or salivary glands disorders. Modern technology is continually striving to improve the results of previous generations of stents and balloon catheters by refining their design, structure, and constituent materials. These advances result in the development of both successive models of drug-eluting stents (DES) and drug-eluting balloons (DEB). This paper presents milestones in the development of DES and DEB, which are a significant option in the treatment of coronary artery diseases. This report reviews the works related to achievements in construction designs and materials, as well as preparation technologies, of DES and DEB. Special attention was paid to the polymeric biodegradable materials used in the production of the above-mentioned devices. Information was also collected on the various methods of producing drug release coatings and their effectiveness in releasing the active substance.
Collapse
Affiliation(s)
- I. Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - I. Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - R. Nowak
- Eye Department, J. Strus City Hospital, Szwajcarska 3, 61-285 Poznań, Poland;
| |
Collapse
|
6
|
Mikrani R, Li C, Naveed M, Li C, Baig MMFA, Zhang Q, Wang Y, Peng J, Zhao L, Zhou X. Pharmacokinetic Advantage of ASD Device Promote Drug Absorption through the Epicardium. Pharm Res 2020; 37:173. [DOI: 10.1007/s11095-020-02898-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 01/03/2023]
|
7
|
Bukka M, Rednam PJ, Sinha M. Drug-eluting balloon: design, technology and clinical aspects. ACTA ACUST UNITED AC 2018; 13:032001. [PMID: 29227279 DOI: 10.1088/1748-605x/aaa0aa] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A drug-eluting balloon is a non-stent technology in which the effective homogenous delivery of anti-proliferative drugs is processed by the vessel wall through an inflated balloon. This is done to restore luminal vascularity in order to treat atherosclerosis, in-stent restenosis and reduce the risk of late thrombosis without implanting a permanent foreign object. The balloon technology relies on the concept of targeted drug delivery, which helps in the rapid healing of the vessel wall and prevents the proliferation of smooth muscle cells. Several drug eluting devices in the form of coated balloons are currently in clinical use, namely DIOR®, PACCOCATH®, SeQuent®Please and IN.PACT™. The device varies in terms of the material used for making the balloon, the coating techniques, the choice of coated drug and the release pattern of the drug at the site. This review gives an insight into the evolution, rationale and comparison of the marketed drug-eluting balloons. Here, different coating techniques have been analysed for the application and critical analysis of available DEB technologies, and a technical comparison has been done.
Collapse
Affiliation(s)
- Meenasree Bukka
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A) Palaj, Opp. Air Force Station, Gandhinagar-382355, Gujarat, India
| | | | | |
Collapse
|
8
|
Falconer D, Papageorgiou N, Antoniades C, Tousoulis D. Gene Therapy. Coron Artery Dis 2018. [DOI: 10.1016/b978-0-12-811908-2.00015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Werner M, Scheinert D. Drug eluting devices for critically ill patients: can we apply lessons learned from the treatment of peripheral artery disease? Adv Drug Deliv Rev 2014; 77:32-9. [PMID: 25049084 DOI: 10.1016/j.addr.2014.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To review the use of drug-eluting devices in peripheral arteries of critically ill patients FINDINGS Drug eluting stents and drug coated balloons are promising technologies and have become an important tool for the endovascular treatment of peripheral artery disease. The concept of local drug delivery to prevent restenosis due to intimal hyperplasia has been proven in several trials for different peripheral vascular beds. Especially for the treatment of patients with critical lower limb ischemia, improved patency could presumably improve wound healing, survival and limb salvage rates. However, until now, there is a paucity of evidence regarding these devices in critically ill patients and lessons learned must be extrapolated from non-critically ill patients at this time. CONCLUSIONS Restenosis rates can be reduced by drug eluting devices. Further study of the clinical impact of the use of drug eluting devices in the peripheral arteries will be required to determine if improved patency rates also can be translated into clinical benefit for critically ill patients.
Collapse
|
11
|
Kalmar PI, Portugaller RH, Schedlbauer P, Bohlsen D, Deutschmann HA. Placement of hemoparin-coated stents in the iliac arteries: early experience and midterm results in 28 patients. Eur J Radiol 2014; 83:1205-1208. [PMID: 24815747 DOI: 10.1016/j.ejrad.2014.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 11/17/2022]
Abstract
PURPOSE Aim was to determine immediate results and mid-term outcome of the hemoparin-coated (HC) stainless-steel stent (camouflage coating) in the treatment of occlusive lesions of the iliac arteries. MATERIALS AND METHODS Twenty-eight patients were prospectively treated with the use of a HC stent between January 2007 and March 2010. Clinical examination and color-doppler ultrasound were performed at 1, 3, 6 and 12 months, CT angiography (CTA) or MR angiography (MRA) at 12 months. Indication for treatment was a high-grade stenosis of the common iliac and/or external iliac artery. RESULTS Successful placement was achieved in all patients. Significant decrease in translesional pressure gradient (>10 mm Hg) was measured in 27 patients (96%). In one patient, proximal dissection occurred without flow limitation. A minor complication (small access site hematoma) occurred in one patient (4%). Two patients (7%) were lost to follow-up. After 12 months, stent patency in CTA, MRA and ultrasound was 100%. 20 patients (77%) experienced an initial improvement of at least one clinical stage. In one patient (4%), mild intimal hyperplasia without significant stenosis was observed. In three patients (12%), proximal or distal stenosis occurred. A non-significant increase of mean ankle-brachial index (ABI) after treatment was measured (0.85 ± 0.27 vs. 0.75 ± 0.22, respectively; p=0.328). CONCLUSIONS The use of HC stents in patients with iliac artery occlusive disease may lead to a lower rate of intimal hyperplasia and thus to increased patency rates even in heavily calcified vessels. However, large-scale prospective trials have to be performed to evaluate the long-term patency rates of the HC coated stents.
Collapse
Affiliation(s)
- Peter I Kalmar
- Medical University of Graz, Department of Radiology, Univ. Hospital Graz, Auenbruggerplatz 9, A-8036 Graz, Austria.
| | - Rupert H Portugaller
- Medical University of Graz, Department of Radiology, Univ. Hospital Graz, Auenbruggerplatz 9, A-8036 Graz, Austria.
| | - Peter Schedlbauer
- Medical University of Graz, Department of Radiology, Univ. Hospital Graz, Auenbruggerplatz 9, A-8036 Graz, Austria.
| | - Dennis Bohlsen
- Medical University of Graz, Department of Radiology, Univ. Hospital Graz, Auenbruggerplatz 9, A-8036 Graz, Austria.
| | - Hannes A Deutschmann
- Medical University of Graz, Department of Radiology, Univ. Hospital Graz, Auenbruggerplatz 9, A-8036 Graz, Austria.
| |
Collapse
|
12
|
Calcium Burden Assessment and Impact on Drug-Eluting Balloons in Peripheral Arterial Disease. Cardiovasc Intervent Radiol 2014; 37:898-907. [DOI: 10.1007/s00270-014-0904-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
13
|
High-throughput screening identifies idarubicin as a preferential inhibitor of smooth muscle versus endothelial cell proliferation. PLoS One 2014; 9:e89349. [PMID: 24586708 PMCID: PMC3933427 DOI: 10.1371/journal.pone.0089349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/20/2014] [Indexed: 01/21/2023] Open
Abstract
Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis). Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC) proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC) lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS) format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection). We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.
Collapse
|
14
|
Fanelli F, Cannavale A. Endovascular treatment of infrapopliteal arteries: angioplasty vs stent in the drug-eluting era. Eur Radiol 2014; 24:793-8. [DOI: 10.1007/s00330-014-3094-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
15
|
Seedial SM, Ghosh S, Saunders RS, Suwanabol PA, Shi X, Liu B, Kent KC. Local drug delivery to prevent restenosis. J Vasc Surg 2013; 57:1403-14. [PMID: 23601595 DOI: 10.1016/j.jvs.2012.12.069] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Despite significant advances in vascular biology, bioengineering, and pharmacology, restenosis remains a limitation to the overall efficacy of vascular reconstructions, both percutaneous and open. Although the pathophysiology of intimal hyperplasia is complex, a number of drugs and molecular tools have been identified that can prevent restenosis. Moreover, the focal nature of this process lends itself to treatment with local drug administration. This article provides a broad overview of current and future techniques for local drug delivery that have been developed to prevent restenosis after vascular interventions. METHODS A systematic electronic literature search using PubMed was performed for all accessible published articles through September 2012. In an effort to remain current, additional searches were performed for abstracts presented at relevant societal meetings, filed patents, clinical trials, and funded National Institutes of Health awards. RESULTS The efficacy of local drug delivery has been demonstrated in the coronary circulation with the current clinical use of drug-eluting stents. Until recently, however, drug-eluting stents were not found to be efficacious in the peripheral circulation. Further pursuit of intraluminal devices has led to the development of balloon-based technologies, with a recent surge in trials involving drug-eluting balloons. Early data appear encouraging, particularly for treatment of superficial femoral artery lesions, and several devices have recently received the Conformité Européene mark in Europe. Investigators have also explored the periadventitial application of biomaterials containing antirestenotic drugs, an approach that could be particularly useful for surgical bypass or endarterectomy. In the past, systemic drug delivery has been unsuccessful; however, there has been recent exploration of intravenous delivery of drugs designed specifically to target injured or reconstructed arteries. Our review revealed a multitude of additional interesting strategies, including >65 new patents issued during the past 2 years for approaches to local drug delivery focused on preventing restenosis. CONCLUSIONS Restenosis after intraluminal or open vascular reconstruction remains an important clinical problem. Success in the coronary circulation has not translated into solutions for the peripheral arteries. However, our literature review reveals a number of promising approaches, including drug-eluting balloons, periadventitial drug delivery, and targeted systemic therapies. These and other innovations suggest that the future is bright and that a solution for preventing restenosis in peripheral vessels will soon be at hand.
Collapse
|