5
|
Gao W, Weng T, Wang L, Shi B, Meng W, Wang X, Wu Y, Jin L, Fei L. Long non‑coding RNA NORAD promotes cell proliferation and glycolysis in non‑small cell lung cancer by acting as a sponge for miR‑136‑5p. Mol Med Rep 2019; 19:5397-5405. [PMID: 31059060 PMCID: PMC6522956 DOI: 10.3892/mmr.2019.10210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
NORAD (non-coding RNA activated by DNA damage) is a long non-coding RNA (lncRNA) that is upregulated and promotes cell progression in various human types of cancer; however, its function in non-small cell lung cancer (NSCLC) remains unclear. The present study investigated the regulatory function and underlying mechanisms of NORAD in NSCLC. NORAD and miR-136-5p expression were assessed by reverse transcription-quantitative polymerase chain reaction, and proliferation and glycolysis-associated markers were also assessed. Direct miR-136-5p regulation by NORAD was detected using luciferase reporter assay and RNA immunoprecipitation. NORAD was highly expressed in NSCLC tissues and cell lines. NORAD overexpression increased NSCLC proliferation and glycolysis. Further investigation revealed that NORAD serves as a competing endogenous RNA for miR-136-5p. Gain- and loss-of-function experiments confirmed that miR-136-5p reversed the promoting effects of NORAD in NSCLC. Results of the present study indicate that NORAD serves as a growth-promoting lncRNA in NSCLC by suppressing the function of miR-136-5p. NORAD and miR-136-5p interaction may provide a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Wei Gao
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Ting Weng
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Lifang Wang
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Bin Shi
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Wenshu Meng
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Xiaoyu Wang
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Ying Wu
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Liang Jin
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Lijuan Fei
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
7
|
Sheervalilou R, Shirvaliloo S, Fekri Aval S, Khamaneh AM, Sharifi A, Ansarin K, Zarghami N. A new insight on reciprocal relationship between microRNA expression and epigenetic modifications in human lung cancer. Tumour Biol 2017; 39:1010428317695032. [PMID: 28468581 DOI: 10.1177/1010428317695032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lung cancer stands among the leading causes of cancer-related death in the world. Although the molecular network implicated in lung cancer development is extensively revealed, the mortality rate is only slightly improved. MicroRNAs are small, endogenous single-stranded evolutionary conserved non-coding RNAs which involve in a wide variety of biological processes including cell growth, proliferation, metabolism, and differentiation. MicroRNAs, as novel biomarkers, have multiple functions in normal lung tissue development, and aberrant expression profiles of certain microRNAs could induce lung tumorigenesis. Similar to that of protein-coding genes, microRNA expression and function are regulated by multiple factors as well as the epigenetic network including DNA methylation and histone modification mechanisms. Furthermore, microRNAs can themselves regulate key enzymes which drive epigenetic modifications and have a pivotal effect on the cell biology. In this review, we will look into the regulatory loop linkage between microRNA expression and epigenetic modifications, and then, we will discuss the effects of epigenetics on the miRNome, as well as the role of epi-microRNAs in controlling the epigenome in human lung cancer. Better knowledge of reciprocal connection between microRNAs and epigenome will help to develop novel microRNA-orientated diagnostic, prognostic and therapeutic strategies related to human lung cancer in future.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- 1 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakine Shirvaliloo
- 4 Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Fekri Aval
- 2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,5 Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mahdi Khamaneh
- 1 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- 2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- 2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- 2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,5 Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Liu J, Zhong X, Li J, Liu B, Guo S, Chen J, Tan Q, Wang Q, Ma W, Wu Z, Wang H, Hou M, Zhang HT, Zhou Q. Screening and identification of lung cancer metastasis-related genes by suppression subtractive hybridization. Thorac Cancer 2012; 3:207-216. [PMID: 28920308 DOI: 10.1111/j.1759-7714.2011.00092.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Lung cancer metastasis is a complicated process in which multiple stages and multiple genes are involved. There is an urgent need to use new molecular biology techniques to get more systematic information and have a general idea of the molecular events that take place in lung cancer metastasis. The object of this study was to construct the subtracted cDNA libraries of different metastatic potential lung cancer cell lines, NL9980 and L9981, which were established and screened from human lung large cell carcinoma cell line, WCQH-9801. METHOD The forward and reverse subtracted cDNA libraries were constructed in the large cell lung cancer cell lines NL9980 and L9981 with the same heredity background but different metastatic potential, by suppression subtractive hybridization (SSH). The positive clones were preliminarily screened by blue-white colony and precisely identified by PCR. The forward and reverse subtracted libraries were screened and identified by dot blot so as to obtain the clones corresponding to gene segments with differential expression. DNA sequencing was performed to analyze the sequences of differential expression segments, which were then searched and compared using the Basic Local Alignment Search Tool from The National Center for Biotechnology Information NCBI BLAST tools. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) and western blotting were performed to confirm the differential expressed genes both on RNA and protein levels. RESULTS The forward and reverse subtracted cDNA libraries of the different large cell lung cancer cell lines with metastatic potential were successfully constructed. With blue-white colony and dot blot, 307 positive clones in the forward subtracted library and 78 positive clones in the reverse subtracted library were obtained. Fifty-five clones were successfully sequenced in the forward subtracted library while 31 clones were successfully sequenced in the reverse subtracted library. One new expressed sequence tag (EST) segment was identified from the reverse subtracted cDNA library and was successfully submitted to GenBank and embodied by GenBank. For the differentially expressed genes between L9981 and NL9980 screened by SSH, four genes, ANXA2, KRT18, ACTG1 was upregulated in L9981 cells compared to NL9980 cells. Annexin A2 (which was encoded by ANXA2), γ-actin (which was encoded by ACTG1), and aldose reductase (which was encoded by AKR1B1) proteins were upregulated in L9981 cells compared to NL9980 cells by western blotting. CONCLUSION The forward and reverse subtracted cDNA libraries of different metastatic potential large cell lung cancer cell lines were successfully constructed by SSH. A series of genes have been screened out to have significantly different expression levels between lung cancer cell lines NL9980 and L9981. A new EST segment that may represent a new metastasis-related gene has been identified. Consistent with the result of SSH, both quantitative real-time RT-PCR and western Blotting confirmed the upregulation of ANXA2, ACTG1 and AKR1B1 in lung cancer cell line L9981 compared with NL9980. These three genes may play important roles in lung cancer metastasis.
Collapse
Affiliation(s)
- Jiewei Liu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Xiaorong Zhong
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Juan Li
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Baoxing Liu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Shanxian Guo
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Jun Chen
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Qingwei Tan
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Qin Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Wei Ma
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Zhihao Wu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Haisu Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Mei Hou
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Hong-Tao Zhang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Qinghua Zhou
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| |
Collapse
|