1
|
AKR1B1 as a Prognostic Biomarker of High-Grade Serous Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14030809. [PMID: 35159076 PMCID: PMC8834204 DOI: 10.3390/cancers14030809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary We evaluated the levels of AKR1B1 and AKR1B10 in 99 patients with high-grade serous ovarian cancer and their association with clinicopathological characteristics, survival, and response to chemotherapy. An immunohistochemical analysis showed that higher AKR1B1 levels correlated with a better disease-free survival of patients whereas we saw no differences for AKR1B10 levels. A multivariant Cox analysis identified high AKR1B1 levels as an important prognostic factor for both overall and disease-free survival. A further analysis revealed no association between AKR1B1 and AKR1B10 levels and response to chemotherapy. Abstract Although aldo-keto reductases (AKRs) have been widely studied in cancer, no study to date has examined the roles of AKR family 1 members B1 (AKR1B1) and B10 (AKR1B10) in a large group of ovarian cancer patients. AKR1B1 and AKR1B10 play a significant role in inflammation and the metabolism of different chemotherapeutics as well as cell differentiation, proliferation, and apoptosis. Due to these functions, we examined the potential of AKR1B1 and AKR1B10 as tissue biomarkers. We assessed the immunohistochemical levels of AKR1B1 and AKR1B10 in tissue paraffin sections from 99 patients with high-grade serous ovarian cancer (HGSC) and compared these levels with clinicopathological characteristics, survival, and response to chemotherapy. A higher immunohistochemical AKR1B1 expression correlated with a better overall and disease-free survival of HGSC patients whereas AKR1B10 expression did not show any significant differences. A multivariant Cox analysis demonstrated that a high AKR1B1 expression was an important prognostic factor for both overall and disease-free survival. However, AKR1B1 and AKR1B10 were not associated with different responses to chemotherapy. Our data suggest that AKR1B1 is involved in the pathogenesis of HGSC and is a potential prognostic biomarker for this cancer.
Collapse
|
2
|
Krauss C, Aurelus C, Johnston K, Hedley J, Banerjee S, Wisniewski S, Reaves Q, Dia K, Brown S, Bartlet V, Gavin S, Cuffee J, Banerjee N, Rawat K, Mandal S, Abedin Z, Ghosh S, Banerjee H. A Study of Differential Gene Expression and Core Canonical Pathways Involved in Rhenium Ligand Treated Epithelial Mesenchymal Transition (EMT) Induced A549 Lung Cancer Cell Lines by INGENUITY Software System. COMPUTATIONAL MOLECULAR BIOSCIENCE 2022; 12:12-19. [PMID: 35342659 PMCID: PMC8955764 DOI: 10.4236/cmb.2022.121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Christopher Krauss
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Chelsey Aurelus
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Kayla Johnston
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Joseph Hedley
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Satyendra Banerjee
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Sarah Wisniewski
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Quentin Reaves
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Khadimou Dia
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Shenell Brown
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Victoria Bartlet
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Sheritta Gavin
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Jazmine Cuffee
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Narendra Banerjee
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Kuldeep Rawat
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| | - Santosh Mandal
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | | | - Somiranjan Ghosh
- Department of Pediatrics and Child Health, Howard University Medical School, Washington DC, USA
| | - Hirendra Banerjee
- Department of Natural Sciences and Department of Health and Human Studies, Elizabeth City State University, University of NC, Elizabeth City, NC, USA
| |
Collapse
|
3
|
AKR1B1 and AKR1B10 as Prognostic Biomarkers of Endometrioid Endometrial Carcinomas. Cancers (Basel) 2021; 13:cancers13143398. [PMID: 34298614 PMCID: PMC8305663 DOI: 10.3390/cancers13143398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary We evaluated the potential of AKR1B1 and AKR1B10 as tissue biomarkers of endometrial cancer by assessing the immunohistochemical levels of AKR1B1 and AKR1B10 in tissue paraffin sections from 101 well-characterized patients with endometrioid endometrial cancer and 12 patients with serous endometrial cancer. Significantly higher immunohistochemical levels of AKR1B1 and AKR1B10 were found in adjacent non-neoplastic endometrial tissue compared to endometrioid endometrial cancer. The group of patients with both AKR1B1 and AKR1B10 staining above the median values showed significantly better overall and disease-free survival compared to all other patients. Multivariant Cox analysis recognized a strong AKR1B1 and AKR1B10 staining as a statistically important survival prediction factor in patients with endometrioid endometrial cancer. In contrast, we observed no significant differences in AKR1B1 and AKR1B10 staining in patients with serous endometrial cancer. Our results suggest that AKR1B1 and AKR1B10 have protective roles in endometrioid endometrial cancer and represent prognostic biomarker candidates. Abstract The roles of aldo-keto reductase family 1 member B1 (AKR1B1) and B10 (AKR1B10) in the pathogenesis of many cancers have been widely reported but only briefly studied in endometrial cancer. To clarify the potential of AKR1B1 and AKR1B10 as tissue biomarkers of endometrial cancer, we evaluated the immunohistochemical levels of AKR1B1 and AKR1B10 in tissue paraffin sections from 101 well-characterized patients with endometrioid endometrial cancer and 12 patients with serous endometrial cancer and compared them with the clinicopathological data. Significantly higher immunohistochemical levels of AKR1B1 and AKR1B10 were found in adjacent non-neoplastic endometrial tissue compared to endometrioid endometrial cancer. A trend for better survival was observed in patients with higher immunohistochemical AKR1B1 and AKR1B10 levels. However, no statistically significant differences in overall survival or disease-free survival were observed when AKR1B1 or AKR1B10 were examined individually in endometrioid endometrial cancer. However, analysis of AKR1B1 and AKR1B10 together revealed significantly better overall and disease-free survival in patients with both AKR1B1 and AKR1B10 staining above the median values compared to all other patients. Multivariant Cox analysis identified strong AKR1B1 and AKR1B10 staining as a statistically important survival prediction factor. Conversely, no significant differences were found in serous endometrial cancer. Our results suggest that AKR1B1 and AKR1B10 play protective roles in endometrioid endometrial cancer and show potential as prognostic biomarkers.
Collapse
|
4
|
Shapanis A, Lai C, Sommerlad M, Parkinson E, Healy E, Skipp P. Proteomic Profiling of Archived Tissue of Primary Melanoma Identifies Proteins Associated with Metastasis. Int J Mol Sci 2020; 21:ijms21218160. [PMID: 33142795 PMCID: PMC7663670 DOI: 10.3390/ijms21218160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Formalin-fixed paraffin embedded (FFPE) clinical tissues represent an abundant and unique resource for translational proteomic studies. In the US, melanoma is the 5th and 6th most common cancer in men and women, respectively, affecting over 230,000 people annually and metastasising in 5–15% of cases. Median survival time for distant metastatic melanoma is 6–9 months with a 5-year-survival of < 15%. In this study, 24 primary FFPE tumours which have metastasised (P-M) and 24 primary FFPE tumours which did not metastasise (P-NM) were subjected to proteomic profiling. In total, 2750 proteins were identified, of which 16 were significantly differentially expressed. Analysis of TCGA data demonstrated that expression of the genes encoding for 6 of these 16 proteins had a significant effect on survival in cutaneous melanoma. Pathway analysis of the proteomics data revealed mechanisms likely involved in the process of melanoma metastasis, including cytoskeleton rearrangement, extracellular changes and immune system alterations. A machine learning prediction model scoring an AUC of 0.922, based on these 16 differentially expressed proteins was able to accurately classify samples into P-M and P-NM. This study has identified potential biomarkers and key processes relating to melanoma metastasis using archived clinical samples, providing a basis for future studies in larger cohorts.
Collapse
Affiliation(s)
- Andrew Shapanis
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
| | - Chester Lai
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.L.); (E.H.)
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Mathew Sommerlad
- Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
| | - Erika Parkinson
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
| | - Eugene Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.L.); (E.H.)
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
- Correspondence:
| |
Collapse
|
5
|
Chen S, Wang X, Yuan J, Deng C, Xie X, Kang J. Reduced levels of actin gamma 1 predict poor prognosis in ovarian cancer patients. J Obstet Gynaecol Res 2020; 46:1827-1834. [DOI: 10.1111/jog.14353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Shiyan Chen
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Xiaoxia Wang
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Jin Yuan
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Cui Deng
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Xueman Xie
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| | - Jiali Kang
- Department of Obstetrics and Gynecology, Guangzhou First People's HospitalGuangzhou Medical University Guangzhou China
| |
Collapse
|
6
|
Khayami R, Hashemi SR, Kerachian MA. Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J Cell Mol Med 2020; 24:8890-8902. [PMID: 32633024 PMCID: PMC7417692 DOI: 10.1111/jcmm.15581] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
The role of aldo‐keto reductase family 1 member B1 (AKR1B1) in cancer is not totally clear but growing evidence is suggesting to have a great impact on cancer progression. AKR1B1 could participate in a complicated network of signalling pathways, proteins and miRNAs such as mir‐21 mediating mechanisms like inflammatory responses, cell cycle, epithelial to mesenchymal transition, cell survival and apoptosis. AKR1B1 has been shown to be mostly overexpressed in cancer. This overexpression has been associated with inflammatory mediators including nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NFκB), cell cycle mediators such as cyclins and cyclin‐dependent kinases (CDKs), survival proteins and pathways like mammalian target of rapamycin (mTOR) and protein kinase B (PKB) or AKT, and other regulatory factors in response to reactive oxygen species (ROS) and prostaglandin synthesis. In addition, inhibition of AKR1B1 has been shown to mostly have anti‐cancer effects. Several studies have also suggested that AKR1B1 inhibition as an adjuvant therapy could render tumour cells more sensitive to anti‐cancer therapy or alleviate the adverse effects of therapy. AKR1B1 could also be considered as a potential cancer diagnostic biomarker since its promoter has shown high levels of methylation. Although pre‐clinical investigations on the role of AKR1B1 in cancer and the application of its inhibitors have shown promising results, the lack of clinical studies on AKR1B1 inhibitors has hampered the use of these drugs to treat cancer. Thus, there is a need to conduct more clinical studies on the application of AKR1B1 inhibitors as adjuvant therapy on different cancers.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Hashemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| |
Collapse
|
7
|
Hu F, Zhou Y, Wang Q, Yang Z, Shi Y, Chi Q. Gene Expression Classification of Lung Adenocarcinoma into Molecular Subtypes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1187-1197. [PMID: 30892233 DOI: 10.1109/tcbb.2019.2905553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As one of the most common malignancies in the world, lung adenocarcinoma (LUAD) is currently difficult to cure. However, the advent of precision medicine provides an opportunity to improve the treatment of lung cancer. Subtyping lung cancer plays an important role in performing a specific treatment. Here, we developed a framework that combines k-means clustering, t-test, sensitivity analysis, self-organizing map (SOM) neural network, and hierarchical clustering methods to classify LUAD into four subtypes. We determined that 24 differentially expressed genes could be used as therapeutic targets, and five genes (i.e., RTKN2, ADAM6, SPINK1, COL3A1, and COL1A2) could be potential novel markers for LUAD. Multivariate analysis showed that the four subtypes could serve as prognostic subtypes. Representative genes of each subtype were also identified, which could be potentially targetable markers for the different subtypes. The function and pathway enrichment analyses of these representative genes showed that the four subtypes have different pathological mechanisms. Mutations associated with the subtypes, e.g., epidermal growth factor receptor (EGFR) mutations in subtype 4 and tumor protein p53 (TP53) mutations in subtypes 1 and 2, could serve as potential markers for drug development. The four subtypes provide a foundation for subtype-specific therapy of LUAD.
Collapse
|
8
|
KRT18 is correlated with the malignant status and acts as an oncogene in colorectal cancer. Biosci Rep 2019; 39:BSR20190884. [PMID: 31345960 PMCID: PMC6692566 DOI: 10.1042/bsr20190884] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/09/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Keratin 18 (KRT18) has been suggested to be overexpressed in most types of human tumor, but the expression pattern of KRT18 in colorectal cancer (CRC) remained unknown. In our research, KRT18 protein expression was markedly increased in CRC cancer tissues and cell lines compared with adjacent normal colorectal tissues and normal colonic epithelial cell line, respectively. Meanwhile, we observed high KRT18 expression was associated with advanced clinical stage, deep tumor invasion, lymph node metastasis, distant metastasis, poor differentiation and unfavorable prognosis in CRC patients. Multivariate Cox regression analysis showed high expression of KRT18 was an unfavorable independent predictor for overall survival in CRC patients. The in vitro studies indicated down-regulation of KRT18 expression depressed CRC cell viability, migration and invasion. In conclusion, KRT18 serves as an oncogenic role in CRC progression and may be a therapeutic target for promoting CRC patients' prognosis.
Collapse
|
9
|
Na HK, Kim M, Chang SS, Kim SY, Park JY, Chung MW, Yang M. Tobacco smoking-response genes in blood and buccal cells. Toxicol Lett 2014; 232:429-37. [PMID: 25447457 DOI: 10.1016/j.toxlet.2014.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022]
Abstract
Tobacco smoking is a well-known cause of various diseases, however, its toxic mechanisms for diseases are not completely understood, yet. Therefore, we performed biological monitoring to find tobacco smoking-responsive mechanisms including oxidative stress in Korean men (N=36). Whole genome microarray analyses were performed with peripheral blood from smokers and age-matched nonsmokers. We also performed qRT-PCR to confirm the microarray results and compared the gene expression of blood to those of buccal cells. To assess the effects of tobacco smoking on oxidative stress, we analyzed urinary levels of malondialdehyde (MDA), a lipid peroxidation marker, and performed PCR-based arrays on reactive oxygen species (ROS)-related genes. As results, 34 genes were differently expressed in blood between smokers and nonsmokers (ps<0.01 and >1.5-fold change). Particularly, the genes involved in immune responsive pathways, e.g., the Fcγ-receptor mediated phagocytosis and the leukocyte transendothelial migration pathways, were differentially expressed between smokers and nonsmokers. Among the above genes, the ACTG1, involved in the maintenance of actin cytoskeleton, cell migration and cancer metastasis, was highly expressed by smoking in both blood and buccal cells. Concerning oxidative stress, smokers showed high levels of urinary MDA and down-regulation of expressions of antioxidant related genes including TPO, MPO, GPX2, PTGR1, and NUDT1 as compared to nonsmokers (ps<0.05). In conclusion, these results suggest that systemically altered immune response and oxidative stress can be tobacco-responsive mechanisms for the related diseases. Based on consistent results in blood and buccal cells, expression of the ACTG1 can be a tobacco smoking-responsive biomarker.
Collapse
Affiliation(s)
- Hyun-Kyung Na
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Minju Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Seong-Sil Chang
- Department of Occupational and Environmental Medicine, Eulji University Hospital, Daejeon, Republic of Korea
| | - Soo-Young Kim
- Department of Occupational and Environmental Medicine, Eulji University Hospital, Daejeon, Republic of Korea
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, U.S.A
| | - Myeon Woo Chung
- Laboratory Animal Resources Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Republic of Korea
| | - Mihi Yang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|