1
|
Hagiwara R, Oki Y, Matsumaru T, Ibayashi S, Kano K. Generation of metabolically functional hepatocyte-like cells from dedifferentiated fat cells by Foxa2, Hnf4a and Sall1 transduction. Genes Cells 2020; 25:811-824. [PMID: 33064855 PMCID: PMC7894465 DOI: 10.1111/gtc.12814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 01/17/2023]
Abstract
Mature adipocyte-derived dedifferentiated fat (DFAT) cells have been identified to possess similar multipotency to mesenchymal stem cells, but a method for converting DFAT cells into hepatocytes was previously unknown. Here, using comprehensive analysis of gene expression profiles, we have extracted three transcription factors, namely Foxa2, Hnf4a and Sall1 (FHS), that can convert DFAT cells into hepatocytes. Hepatogenic induction has converted FHS-infected DFAT cells into an epithelial-like morphological state and promoted the expression of hepatocyte-specific features. Furthermore, the DFAT-derived hepatocyte-like (D-Hep) cells catalyzed the detoxification of several compounds. These results indicate that the transduction of DFAT cells with three genes, which were extracted by comprehensive gene expression analysis, efficiently generated D-Hep cells with detoxification abilities similar to those of primary hepatocytes. Thus, D-Hep cells may be useful as a new cell source for surrogate hepatocytes and may be applied to drug discovery studies, such as hepatotoxicity screening and drug metabolism tests.
Collapse
Affiliation(s)
- Reiko Hagiwara
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takashi Matsumaru
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shiho Ibayashi
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
2
|
Zakeri N, Mirdamadi ES, Kalhori D, Solati-Hashjin M. Signaling molecules orchestrating liver regenerative medicine. J Tissue Eng Regen Med 2020; 14:1715-1737. [PMID: 33043611 DOI: 10.1002/term.3135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
The liver is in charge of more than 500 functions in the human body, which any damage and failure to the liver can significantly compromise human life. Numerous studies are being carried out in regenerative medicine, as a potential driving force, toward alleviating the need for liver donors and fabrication of a 3D-engineered transplantable hepatic tissue. Liver tissue engineering brings three main factors of cells, extracellular matrix (ECM), and signaling molecules together, while each of these three factors tries to mimic the physiological state of the tissue to direct tissue regeneration. Signaling molecules play a crucial role in directing tissue fabrication in liver tissue engineering. When mimicking the natural in vivo process of regeneration, it is tightly associated with three main phases of differentiation, proliferation (progression), and tissue maturation through vascularization while directing each of these phases is highly regulated by the specific signaling molecules. The understanding of how these signaling molecules guide the dynamic behavior of regeneration would be a tool for further tailoring of bioengineered systems to help the liver regeneration with many cellular, molecular, and tissue-level functions. Hence, the signaling molecules come to aid all these phases for further improvements toward the clinical use of liver tissue engineering as the goal.
Collapse
Affiliation(s)
- Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
3
|
Tang W, Guo R, Shen SJ, Zheng Y, Lu YT, Jiang MM, Cui X, Jiang CZ, Xie X. Chemical cocktails enable hepatic reprogramming of human urine-derived cells with a single transcription factor. Acta Pharmacol Sin 2019; 40:620-629. [PMID: 30315254 DOI: 10.1038/s41401-018-0170-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Human liver or hepatocyte transplantation is limited by a severe shortage of donor organs. Direct reprogramming of other adult cells into hepatic cells may offer a solution to this problem. In a previous study, we have generated hepatocyte-like cells from mouse fibroblasts using only one transcription factor (TF) plus a chemical cocktail. Here, we show that human urine-derived epithelial-like cells (hUCs) can also be transdifferentiated into human hepatocyte-like cells (hiHeps) using one TF (Foxa3, Hnf1α, or Hnf4α) plus the same chemical cocktail CRVPTD (C, CHIR99021; R, RepSox; V, VPA; P, Parnate; T, TTNPB; and D, Dznep). These hiHeps express multiple hepatocyte-specific genes and display functions characteristic of mature hepatocytes. With the introduction of the large T antigen, these hiHeps can be expanded in vitro and can restore liver function in mice with concanavalin-A-induced acute liver failure. Our study provides a strategy to generate functional hepatocyte-like cells from hUCs by using a single TF plus a chemical cocktail.
Collapse
|
4
|
Guo R, Tang W, Yuan Q, Hui L, Wang X, Xie X. Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor. Stem Cell Reports 2017; 9:499-512. [PMID: 28757167 PMCID: PMC5550014 DOI: 10.1016/j.stemcr.2017.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
Liver or hepatocytes transplantation is limited by the availability of donor organs. Functional hepatocytes independent of the donor sources may have wide applications in regenerative medicine and the drug industry. Recent studies have demonstrated that chemical cocktails may induce reprogramming of fibroblasts into a range of functional somatic cells. Here, we show that mouse fibroblasts can be transdifferentiated into the hepatocyte-like cells (iHeps) using only one transcription factor (TF) (Foxa1, Foxa2, or Foxa3) plus a chemical cocktail. These iHeps show typical epithelial morphology, express multiple hepatocyte-specific genes, and acquire hepatocyte functions. Genetic lineage tracing confirms the fibroblast origin of these iHeps. More interestingly, these iHeps are expandable in vitro and can reconstitute the damaged hepatic tissues of the fumarylacetoacetate hydrolase-deficient (Fah−/−) mice. Our study provides a strategy to generate functional hepatocyte-like cells by using a single TF plus a chemical cocktail and is one step closer to generate the full-chemical iHeps. Fibroblasts are converted to iHeps using only one TF plus a chemical cocktail Genetic lineage tracing confirms the fibroblast origin of these iHeps The iHeps are expendable and functional both in vitro and in vivo
Collapse
Affiliation(s)
- Ren Guo
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Tang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qianting Yuan
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Lijian Hui
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy for Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Xin Wang
- Key Laboratory of National Education, Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010021, China; Department of Laboratory Medicine and Pathology, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China; Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Wang K, Chen X, Ren J. Autologous bone marrow stem cell transplantation in patients with liver failure: a meta-analytic review. Stem Cells Dev 2015; 24:147-59. [PMID: 25356526 DOI: 10.1089/scd.2014.0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autologous bone marrow stem cell (ABMSC) transplantation has been utilized in clinical practice to treat patients with liver failure, but the therapeutic effect remains to be defined. A meta-analysis is essential to assess clinical advantages of ABMSC transplantation in patients with liver failure. A systematic search of published works [eg, PubMed, Medline, Embase, Chin J Clinicians (Electronic edition), and Science Citation Index] was conducted to compare clinical outcomes of ABMSC transplantation in patients with liver failure. Meta-analytic results were tested by fixed-effects model or random-effects model, dependent on the characteristics of variables. A total of 534 patients from seven studies were included in final meta-analysis. Subsequent to ABMSC transplantation, there was no significant improvement in general symptom and signs such as loss of appetite, fatigue, and ascites. Activities of serum ALT were not significantly decreased with weighted mean difference (WMD) of -19.36 and 95% confidence interval (CI) -57.53 to 18.80 (P=0.32). Postoperative level of albumin (ALB) was expectedly enhanced by stem cell transplantation (WMD 2.97, 95% CI 0.52 to 5.43, P<0.05, I(2)=84%). Coagulation function was improved as demonstrated by a short prothrombin time (PT) (WMD -1.18, 95% CI -2.32 to -0.03, P<0.05, I(2)=6%), but was not reflected by prothrombin activity (PTA) (P=0.39). Total bilirubin (TBIL) was drastically diminished after ABMSC therapy (WMD -14.85, 95% CI -20.39 to -9.32, P<0.01, I(2)=73%). Model for end-stage liver disease (MELD) scores were dramatically reduced (WMD -2.27, 95% CI -3.53 to -1.02, P<0.01, I(2)=0%). The advantage of ABMSC transplantation could be maintained more than 24 weeks as displayed by time-courses of ALB, TBIL, and MELD score. ABMSC transplantation does provide beneficial effects for patients with liver failure. Therapeutic effects can last for 6 months. However, long-term effects need to be determined.
Collapse
Affiliation(s)
- Kewei Wang
- 1 Department of Surgery, University of Illinois College of Medicine , Peoria, Illinois
| | | | | |
Collapse
|
6
|
Cieślar-Pobuda A, Wiechec E. Research on liver regeneration as an answer to the shortage of donors for liver transplantation. Hepatol Res 2014; 44:944-6. [PMID: 25224133 DOI: 10.1111/hepr.12265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Artur Cieślar-Pobuda
- Department of Clinical & Experimental Medicine (IKE), Division of Cell Biology, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linkoping, Sweden; Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | | |
Collapse
|
7
|
Cray J, Cooper GM. Regression modeling to inform cell incorporation into therapies for craniosynostosis. J Craniofac Surg 2013; 24:226-31. [PMID: 23348290 DOI: 10.1097/scs.0b013e31826cfe09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Designing an appropriate tissue engineering solution for craniosynostosis (CS) necessitates determination of whether CS-derived cells differ from normal (wild-type, WT) cells and what assays are appropriate to test for differences. Traditional methodologies to statistically compare cellular behavior may not accurately reflect biologically relevant differences because they poorly address variation. Here, logistic regression was used to determine which assays could identify a biological difference between WT and CS progenitor cells. Quantitative alkaline phosphatase and MTS proliferation assays were performed on adipose, muscle, and bone marrow-derived cells from WT and CS rabbits. Data were stratified by assay, cell type, and days in culture. Coefficients of variation were calculated and assay results coded as predictive variables. Phenotype (WT or CS) was coded as the dependent variable. Sensitivity-specificity curves, classification tables, and receiver operating characteristic curves were plotted for discriminating models. Two data sets were utilized for subsequent analyses; one was used to develop the logistic regression models for prediction, and the other independent data set was used to determine the ability to predict group membership based on the predictive equation. The resulting coefficients of variation were high for all differentiation measures. Upon model implementation, bone marrow assays were observed to result in 72%-100% predictability for phenotype. We found predictive differences in our muscle-derived and bone marrow-derived cells suggesting biologically relevant differences. This data analysis methodology could help identify homogenous cells that do not differ between pathologic and normal individuals or cells that differ in their osteogenic potential, depending on the type of cell-based therapy being developed.
Collapse
Affiliation(s)
- James Cray
- Department of Oral Biology, Surgery/Plastic Surgery, and Orthodontics, Georgia, USA
| | | |
Collapse
|
8
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|