1
|
Ramesh D, Vijayakumar BG, Kannan T. Therapeutic potential of uracil and its derivatives in countering pathogenic and physiological disorders. Eur J Med Chem 2020; 207:112801. [PMID: 32927231 DOI: 10.1016/j.ejmech.2020.112801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Uracil is one of the most notable pharmacophores in medicinal chemistry as the pyrimidine nucleobase forms an integral part of many commercial drugs. Though the name uracil is usually associated with cancer drugs, there are many uracil-based compounds which can treat different diseases when they are employed. So far, there has been no in-depth review concerning uracil drugs in the market, or in the different stages of clinical trials, including those approved or discontinued. The current work focuses on the importance of uracil and its derivatives in treating different diseases. The use of uracil compounds in treating viral infections, cancer, diabetic, thyroid and autosomal recessive disorders are discussed in the review. The mechanism of action of each uracil drug with emphasis on their structure and properties are discussed in detail. The targeted action of these drugs on sites or on the different stages of a disorder/pathogenic life cycle are also discussed. This review encompasses uracil drugs approved as well as those in development from the 1950's onwards. The utility of uracil in drug discovery and its association with a wide range of diseases is brought forth within this review to demonstrate its potential to a wider audience.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India
| | | | - Tharanikkarasu Kannan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
2
|
Nag M, De Paris K, E Fogle J. Epigenetic Modulation of CD8⁺ T Cell Function in Lentivirus Infections: A Review. Viruses 2018; 10:v10050227. [PMID: 29710792 PMCID: PMC5977220 DOI: 10.3390/v10050227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cells are critical for controlling viremia during human immunodeficiency virus (HIV) infection. These cells produce cytolytic factors and antiviral cytokines that eliminate virally- infected cells. During the chronic phase of HIV infection, CD8+ T cells progressively lose their proliferative capacity and antiviral functions. These dysfunctional cells are unable to clear the productively infected and reactivated cells, representing a roadblock in HIV cure. Therefore, mechanisms to understand CD8+ T cell dysfunction and strategies to boost CD8+ T cell function need to be investigated. Using the feline immunodeficiency virus (FIV) model for lentiviral persistence, we have demonstrated that CD8+ T cells exhibit epigenetic changes such as DNA demethylation during the course of infection as compared to uninfected cats. We have also demonstrated that lentivirus-activated CD4+CD25+ T regulatory cells induce forkhead box P3 (Foxp3) expression in virus-specific CD8+ T cell targets, which binds the interleukin (IL)-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ promoters in these CD8+ T cells. Finally, we have reported that epigenetic modulation reduces Foxp3 binding to these promoter regions. This review compares and contrasts our current understanding of CD8+ T cell epigenetics and mechanisms of lymphocyte suppression during the course of lentiviral infection for two animal models, FIV and simian immunodeficiency virus (SIV).
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
3
|
Taffin E, Paepe D, Goris N, Auwerx J, Debille M, Neyts J, Van de Maele I, Daminet S. Antiviral treatment of feline immunodeficiency virus-infected cats with (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine. J Feline Med Surg 2015; 17:79-86. [PMID: 24782459 PMCID: PMC10816418 DOI: 10.1177/1098612x14532089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Feline immunodeficiency virus (FIV), the causative agent of an acquired immunodeficiency syndrome in cats (feline AIDS), is a ubiquitous health threat to the domestic and feral cat population, also triggering disease in wild animals. No registered antiviral compounds are currently available to treat FIV-infected cats. Several human antiviral drugs have been used experimentally in cats, but not without the development of serious adverse effects. Here we report on the treatment of six naturally FIV-infected cats, suffering from moderate to severe disease, with the antiretroviral compound (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine ([R]-PMPDAP), a close analogue of tenofovir, a widely prescribed anti-HIV drug in human medicine. An improvement in the average Karnofsky score (pretreatment 33.2 ± 9.4%, post-treatment 65±12.3%), some laboratory parameters (ie, serum amyloid A and gammaglobulins) and a decrease of FIV viral load in plasma were noted in most cats. The role of concurrent medication in ameliorating the Karnofsky score, as well as the possible development of haematological side effects, are discussed. Side effects, when noted, appeared mild and reversible upon cessation of treatment. Although strong conclusions cannot be drawn owing to the small number of patients and lack of a placebo-treated control group, the activity of (R)-PMPDAP, as observed here, warrants further investigation.
Collapse
Affiliation(s)
- Elien Taffin
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominique Paepe
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Mariella Debille
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Isabel Van de Maele
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Treatment of chronically FIV-infected cats with suberoylanilide hydroxamic acid. Antiviral Res 2014; 108:74-8. [PMID: 24954265 DOI: 10.1016/j.antiviral.2014.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/25/2022]
Abstract
Feline immunodeficiency virus (FIV) is a naturally-occurring, large animal model of lentiviral-induced immunodeficiency syndrome, and has been used as a model of HIV pathogenesis and therapeutic interventions. HIV reservoirs in the form of latent virus remain the primary roadblock to viral eradication and cure, and FIV has been previously established an animal model of lentiviral latency. The goal of this study was to determine whether administration of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) to aviremic, chronically FIV-infected cats would induce latent viral reactivation in vivo. A proof-of-concept experiment in a Transwell co-culture system demonstrated the ability of SAHA to reactivate latent virus which was replication competent and able to infect naïve cells. Oral SAHA (250mg/m(2)) was administered with food to four asymptomatic, experimentally FIV-infected cats and one uninfected control cat, and a limited pharmacokinetic and pharmacodynamic analysis was performed. A statistically significant increase in cell-associated FIV RNA was detected in the cat with the greatest serum SAHA exposure, and cell-free viral RNA was detected at one time point in the three cats that achieved the highest levels of SAHA in serum. Interestingly, there was a significant decrease in viral DNA burden at 2h post drug administration in the same three cats. Though the sample size is small and the drug response was modest, this study provides evidence that in vivo treatment of FIV-infected cats with the HDACi SAHA can induce viral transcriptional reactivation, which may be dependent upon the concentration of SAHA achieved in blood. Importantly, alternative putative antilatency therapy drugs, and multimodal drug combinations, could be studied in this in vivo system. The FIV/cat model provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus in vivo.
Collapse
|
5
|
Abstract
The feline immunodeficiency virus (FIV) shares genomic organization, receptor usage, lymphocyte tropism, and induction of immunodeficiency and increased susceptibility to cancer with the human immunodeficiency virus (HIV). Global distribution, marked heterogeneity and variable host adaptation are also properties of both viruses. These features render the FIV-cat model suitable to explore many aspects of lentivirus-host interaction and adaptation, and to explore treatment and prevention of infection. Examples of fundamental discoveries that have emerged from study in the FIV-cat model concern two-receptor entrance strategies that target memory T-lymphocytes, host factors that restrict retroviral infection, viral strategies for replication in non-dividing cells, and identification of correlates of immunity to the virus. This article provides a brief overview of strengths and limitations of the FIV-cat model for comparative biology and medicine.
Collapse
Affiliation(s)
- Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Sykes JE. Feline Immunodeficiency Virus Infection. CANINE AND FELINE INFECTIOUS DISEASES 2014. [PMCID: PMC7152317 DOI: 10.1016/b978-1-4377-0795-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Sykes JE, Papich MG. Antiviral and Immunomodulatory Drugs. CANINE AND FELINE INFECTIOUS DISEASES 2014. [PMCID: PMC7152038 DOI: 10.1016/b978-1-4377-0795-3.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Gil S, Leal RO, Duarte A, McGahie D, Sepúlveda N, Siborro I, Cravo J, Cartaxeiro C, Tavares LM. Relevance of feline interferon omega for clinical improvement and reduction of concurrent viral excretion in retrovirus infected cats from a rescue shelter. Res Vet Sci 2012; 94:753-63. [PMID: 23122808 PMCID: PMC7111785 DOI: 10.1016/j.rvsc.2012.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 09/03/2012] [Accepted: 09/29/2012] [Indexed: 02/01/2023]
Abstract
Feline Immnunodeficiency (FIV) and Feline Leukemia (FeLV) viruses are common infectious agents in stray cats and shelter environments. Recombinant feline interferon-ω (rFeIFNω) has shown an antiviral action not only against FIV and FeLV but also against herpesvirus (FHV-1) and calicivirus (FCV). Sixteen naturally infected FIV/FeLV cats were followed during rFeIFNω therapy in order to monitor clinical signs and to correlate with excretion of concomitant viruses (FCV, FHV-1, feline coronavirus (FCoV) and parvovirus (FPV)). Cats were submitted to clinical evaluations and concomitant virus excretion assessement. Comparing D0–D65, 10/16 cats improved clinical scores. Of the 10 cats positive for FHV-1 on D0, 4 were negative and 6 reduced viral loads. Of the 11 FCoV positive cats, 9 reduced viral loads. The 13 FCV positive cats and the FPV positive cat were negative on D65. In conclusion, rFeIFNω improves clinical signs and reduces concurrent viral excretion in naturally infected retroviral cats.
Collapse
Affiliation(s)
- Solange Gil
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Technical University of Lisbon (TULisbon), Av. Universidade Técnica, 1300-477 Lisbon, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Miller MM, Fogle JE. Administration of Fozivudine tidoxil as a single-agent therapeutic during acute feline immunodeficiency virus infection does not alter chronic infection. Viruses 2012; 4:954-62. [PMID: 22816034 PMCID: PMC3397356 DOI: 10.3390/v4060954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/19/2012] [Accepted: 06/05/2012] [Indexed: 11/24/2022] Open
Abstract
Initiating combination antiretroviral therapy (ART) during acute HIV infection has been correlated with decreased viral set point and improved lymphocyte function. However, the long term effects of single-agent therapy administered only during the acute stage of infection (interrupted treatment) remain largely uncharacterized. In this study we provide longitudinal data using the feline immunodeficiency virus (FIV) model for HIV infection. Infected cats were treated with a prophylactic single-agent therapy, Fozivudine tidoxil (FZD), for six weeks, starting one day before infection. The initial acute infection study, reported elsewhere, demonstrated a decrease in plasma- and cell-associated viremia at two weeks post-infection (PI) in FZD-treated cats as compared to placebo-treated cats. We hypothesized that this early alteration in plasma- and cell-associated viremia would alter the virus set point and ultimately affect the outcome of chronic infection. Here we provide data at one, two and three years PI for plasma- and/or cell-associated viremia, total lymphocyte counts and CD4:CD8 ratios. There was no difference in viremia or cell counts between treated and nontreated groups at all time points tested. Contrary to our hypothesis, these results suggest that treatment with a single agent anti-retroviral drug during acute lentivirus infection does not significantly alter viral load and immune function during the chronic, asymptomatic stage of infection.
Collapse
Affiliation(s)
- Michelle M Miller
- Immunology Program, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| | | |
Collapse
|
10
|
Mohammadi H, Bienzle D. Pharmacological inhibition of feline immunodeficiency virus (FIV). Viruses 2012; 4:708-24. [PMID: 22754645 PMCID: PMC3386625 DOI: 10.3390/v4050708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/10/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats.
Collapse
Affiliation(s)
- Hakimeh Mohammadi
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|