Journée HL, Journée SL. Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation in Horses.
Vet Clin North Am Equine Pract 2022;
38:189-211. [PMID:
35811197 DOI:
10.1016/j.cveq.2022.04.002]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Depending on the localization of the lesion, spinal cord ataxia is the most common type of ataxia in horses. Most prevalent diagnoses include cervical vertebral stenotic myelopathy (CVSM), equine protozoal myeloencephalitis (EPM), trauma and equine degenerative myeloencephalopathy (EDM). Other causes of ataxia and weakness are associated with infectious causes, trauma and neoplasia. A neurologic examination is indispensable to identify the type of ataxia. In addition, clinical neurophysiology offers tools to locate functional abnormalities in the central and peripheral nervous system. Clinical EMG assessment looks at the lower motoneuron function (LMN) and is used to differentiate between neuropathy in peripheral nerves, which belong to LMNs and myopathy. As LMNs reside in the spinal cord, it is possible to grossly localize lesions in the myelum by muscle examination. Transcranial (tc) stimulation techniques are gaining importance in all areas of medicine to assess the motor function of the spinal cord along the motor tracts to the LMNs. Applications in diagnostics, intraoperative neurophysiological monitoring (IONM), and evaluation of effects of treatment are still evolving in human medicine and offer new challenges in equine medicine. Tc stimulation techniques comprise transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES). TMS was first applied in horses in 1996 by Mayhew and colleagues and followed by TES. The methods are exchangeable for clinical diagnostic assessment but show a few differences. An outline is given on the principles, current clinical diagnostic applications and challenging possibilities of muscle evoked potentials (MEP) from transcranial stimulation in horses.
Collapse