1
|
Kang H, Zsoldos RR, Sole-Guitart A, Narayan E, Cawdell-Smith AJ, Gaughan JB. Heat stress in horses: a literature review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:957-973. [PMID: 37060454 DOI: 10.1007/s00484-023-02467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/15/2023]
Abstract
Healthy adult horses can balance accumulation and dissipation of body heat to maintain their body temperature between 37.5 and 38.5 °C, when they are in their thermoneutral zone (5 to 25 °C). However, under some circumstances, such as following strenuous exercise under hot, or hot and humid conditions, the accumulation of body heat exceeds dissipation and horses can suffer from heat stress. Prolonged or severe heat stress can lead to anhidrosis, heat stroke, or brain damage in the horse. To ameliorate the negative effects of high heat load in the body, early detection of heat stress and immediate human intervention is required to reduce the horse's elevated body temperature in a timely manner. Body temperature measurement and deviations from the normal range are used to detect heat stress. Rectal temperature is the most commonly used method to monitor body temperature in horses, but other body temperature monitoring technologies, percutaneous thermal sensing microchips or infrared thermometry, are currently being studied for routine monitoring of the body temperature of horses as a more practical alternative. When heat stress is detected, horses can be cooled down by cool water application, air movement over the horse (e.g., fans), or a combination of these. The early detection of heat stress and the use of the most effective cooling methods is important to improve the welfare of heat stressed horses.
Collapse
Affiliation(s)
- Hyungsuk Kang
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia.
| | - Rebeka R Zsoldos
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Albert Sole-Guitart
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Edward Narayan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - A Judith Cawdell-Smith
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
2
|
Trigg LE, Lyons S, Mullan S. Risk factors for, and prediction of, exertional heat illness in Thoroughbred racehorses at British racecourses. Sci Rep 2023; 13:3063. [PMID: 36918525 PMCID: PMC10015008 DOI: 10.1038/s41598-023-27892-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2023] [Indexed: 03/16/2023] Open
Abstract
The development of exertional heat illness (EHI) is a health, welfare and performance concern for racehorses. However, there has been limited multivariable assessment of the possible risk factors for EHI in racehorses, despite such information being vital for regulators to effectively manage the condition. Consequently, this study aimed to identify the risk factors associated with the occurrence of EHI in Thoroughbred racehorses and assess the ability of the risk factor model to predict the occurrence of EHI in racehorses to assist in early identification. Runners at British racecourses recorded in the British Horseracing Authority database between 1st July 2010 and 30th April 2018 were used to model the probability that a horse would present with EHI as a function of a suite of environmental, horse level and race level factors. EHI was reported in 0.1% of runners. Race distance, wet bulb globe temperature, preceding 5-day temperature average, occurrence of a previous EHI incident, going, year and race off time were identified as risk factors for EHI. The model performed better than chance in classifying incidents with a mean area under the receiver operating characteristic curve score of 0.884 (SD = 0.02) but had a large number of false positives. The results provide vital evidence for industry on the need to provide appropriate cool down facilities, identify horses that have repeated EHI incidents for early intervention, and collect new data streams such as on course wet bulb globe temperature measurements. The results are especially relevant as the sport is operating in a changing climate and must mitigate against more extreme and longer spells of hot weather.
Collapse
Affiliation(s)
- Leah E Trigg
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK.
| | - Sally Lyons
- British Horseracing Authority, 75 High Holborn, London, WC1V 6LS, UK
| | - Siobhan Mullan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
The Effects of an External Equine Nasal Strip on Thermoregulation During Exercise. J Equine Vet Sci 2022; 119:104141. [PMID: 36265545 DOI: 10.1016/j.jevs.2022.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to examine the effects of an external nasal strip on thermoregulation during submaximal exercise in Standardbred horses. While several studies have been conducted to determine the effects of the external nasal strip on airway resistance, exercise induced pulmonary hemorrhage, gas exchange, and time to fatigue in maximally exercising horses, the effects of the nasal strip on equine thermoregulation have not yet been examined. It was hypothesized that the application of an external nasal strip would alter central venous temperature (Tcore), skin temperature (Tskin), and exercise time to reach a central venous temperature of 40 °C. Eight mature Standardbred horses each performed two submaximal exercise trials, one with a nasal strip (NS), and one without (control), on a high-speed equine treadmill with exercise concluding upon Tcore reaching 40 °C. There were no significant differences in Tcore or Tskin between the NS and control groups during pre-exercise, exercise or recovery (P > .05), nor were there differences (P > .05) in exercise time to reach a Tcore of 40 °C (NS: 11.8 ± 1.5 minutes; Control: 11.5 ± 1.1 min). We conclude that the application of an external nasal strip does not affect the equine thermoregulatory response during submaximal exercise.
Collapse
|
4
|
Kang H, Zsoldos RR, Skinner JE, Gaughan JB, Mellor VA, Sole-Guitart A. The Use of Percutaneous Thermal Sensing Microchips to Measure Body Temperature in Horses during and after Exercise Using Three Different Cool-Down Methods. Animals (Basel) 2022; 12:ani12101267. [PMID: 35625113 PMCID: PMC9137820 DOI: 10.3390/ani12101267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
The frequent monitoring of a horse’s body temperature post strenuous exercise is critical to prevent or alleviate exertional heat illness (EHI) from occurring. Percutaneous thermal sensing microchip (PTSM) technology has the potential to be used as a means of monitoring a horse’s body temperature during and post-exercise. However, the accuracy of the temperature readings obtained, and their relationship to core body temperature are dependent on where they are implanted. This study aimed to document the relationship between core body temperature, and temperature readings obtained using PTSM implanted in different muscles, during exercise and post application of different cool-down methods. PTSMs were implanted into the right pectoral, right gluteal, right splenius muscles, and nuchal ligament. The temperatures were monitored during treadmill exercise, and post application of three different cool-down methods: no water application (Wno), water application only (Wonly), and water application following scraping (Wscraping). Central venous temperature (TCV) and PTSM temperatures from each region were obtained to investigate the optimal body site for microchip implantation. In this study, PTSM technology provided a practical, safe, and quick means of measuring body temperature in horses. However, its temperature readings varied depending on the implantation site. All muscle temperature readings exhibited strong relationships with TCV (r = 0.85~0.92, p < 0.05) after treadmill exercise without human intervention (water application), while the nuchal ligament temperature showed poor relationship with TCV. The relationships between TCV and PTSM temperatures became weaker with water application. Overall, however the pectoral muscle temperature measured by PTSM technology had the most constant relationships with TCV and showed the best potential to act as an alternate means of monitoring body temperature in horses for 50 min post-exercise, when there was no human intervention with cold water application.
Collapse
Affiliation(s)
- Hyungsuk Kang
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (H.K.); (R.R.Z.); (J.E.S.); (J.B.G.); (V.A.M.)
| | - Rebeka R. Zsoldos
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (H.K.); (R.R.Z.); (J.E.S.); (J.B.G.); (V.A.M.)
| | - Jazmine E. Skinner
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (H.K.); (R.R.Z.); (J.E.S.); (J.B.G.); (V.A.M.)
- School of Agriculture and Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - John B. Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (H.K.); (R.R.Z.); (J.E.S.); (J.B.G.); (V.A.M.)
| | - Vincent A. Mellor
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia; (H.K.); (R.R.Z.); (J.E.S.); (J.B.G.); (V.A.M.)
| | - Albert Sole-Guitart
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- Correspondence:
| |
Collapse
|
5
|
Verdegaal ELJMM, Howarth GS, McWhorter TJ, Boshuizen B, Franklin SH, Vidal Moreno de Vega C, Jonas SE, Folwell LE, Delesalle CJG. Continuous Monitoring of the Thermoregulatory Response in Endurance Horses and Trotter Horses During Field Exercise: Baselining for Future Hot Weather Studies. Front Physiol 2021; 12:708737. [PMID: 34512382 PMCID: PMC8427666 DOI: 10.3389/fphys.2021.708737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
Establishing proper policies regarding the recognition and prevention of equine heat stress becomes increasingly important, especially in the face of global warming. To assist this, a detailed view of the variability of equine thermoregulation during field exercise and recovery is essential. 13 endurance horses and 12 trotter horses were equipped with continuous monitoring devices [gastrointestinal (GI) pill, heartrate (HR) monitor, and global positioning system] and monitored under cool weather conditions during four endurance rides over a total of 80 km (40 km loops) and intense trotter track-based exercise over 1,540 m. Recordings included GI temperature (T c ), speed, HR and pre- and post-exercise blood values. A temperature time profile curve of T c was constructed, and a net area under the curve was calculated using the trapezoidal method. Metabolic heat production and oxygen cost of transport were also calculated in endurance horses. Maximum T c was compared using an independent samples t-test. Endurance horses (mean speed 14.1 ± 1.7 km h-1) reached mean maximum T c (39.0 ± 0.4°C; 2 × 40 km in 8 horses) during exercise at 75% of completion of T c exercise and T c returned to baseline within 60 min into recovery. However, the mean T c was still 38.8 ± 0.4°C at a HR of 60 bpm which currently governs "fit to continue" competition decisions. Trotters (40.0 ± 2.9 km h-1) reached a comparable mean max T c (38.8 ± 0.5°C; 12 horses) always during recovery. In 30% of trotters, T c was still >39°C at the end of recovery (40 ± 32 min). The study shows that horses are individuals and thermoregulation monitoring should reflect this, no matter what type of exercise is performed. Caution is advised when using HR cut-off values to monitor thermal welfare in horses since we have demonstrated how T c can peak quite some time after finishing exercise. These findings have implications for training and management of performance horses to safeguard equine welfare and to maximize performance.
Collapse
Affiliation(s)
- Elisabeth-Lidwien J. M. M. Verdegaal
- Equine Health and Performance Centre, University of Adelaide, Adelaide, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Todd J. McWhorter
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Berit Boshuizen
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Samantha H. Franklin
- Equine Health and Performance Centre, University of Adelaide, Adelaide, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Carmen Vidal Moreno de Vega
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Stacey E. Jonas
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Louise E. Folwell
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Catherine J. G. Delesalle
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|