1
|
Puchalska M, Witkowska-Piłaszewicz O. Gene doping in horse racing and equine sports: Current landscape and future perspectives. Equine Vet J 2024. [PMID: 39267222 DOI: 10.1111/evj.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Gene doping, the use of gene therapy or genetic manipulation to enhance athletic performance, has emerged as a potential threat to the integrity and welfare of equine sports, such as horse racing and equestrian sports. This review aims to provide an overview of gene doping in horses, including the underlying technologies, potential applications, detection methods, ethical concerns and future perspectives. By understanding the current landscape of gene doping in horses, stakeholders can work together to develop strategies to safeguard the integrity of equine sports.
Collapse
Affiliation(s)
- Maria Puchalska
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Olga Witkowska-Piłaszewicz
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Couetil L, Ivester K, Barnum S, Pusterla N. Equine respiratory viruses, airway inflammation and performance in thoroughbred racehorses. Vet Microbiol 2021; 257:109070. [PMID: 33865081 DOI: 10.1016/j.vetmic.2021.109070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/06/2021] [Indexed: 12/31/2022]
Abstract
Equine asthma is a common cause of poor performance in racehorses but it is unclear if respiratory viruses contribute to its etiology. The objective of the study was to determine if respiratory viruses were associated with clinical signs and bronchoalveolar lavage fluid (BALF) cytology in Thoroughbred racehorses. Equine herpesviruses (EHV-1, 2, 4, 5) and equine rhinitis A and B viruses (ERBV, ERAV) genomes were quantified by qPCR in nasopharyngeal, tracheal, and BALF samples collected after racing. The relationships between virus detection and load and clinical signs, performance, BALF cytology, and environmental exposures were examined with generalized linear mixed models. Ninety-two samples were collected from 31 horses. EHV-1 and ERAV were not found; EHV-4 was detected in only one sample. EHV-2, EHV-5 and ERBV were more likely to be detected in upper airway samples than in BALF (P < 0.0001). Neither respiratory virus detection nor load was associated with clinical signs or performance. Nasopharyngeal detection and load of ERBV and tracheal detection and load of EHV-5 were associated with increased proportions of neutrophils in BALF (P < 0.003). However, nasopharyngeal detection and load of EHV-5 was not (P = 0.11). Nasopharyngeal detection and load of EHV-2 were associated with decreased BALF mast cell proportions. Respirable dust exposures were significantly higher in horses with detection of ERBV when compared to horses with no detectable ERBV (P < 0.001). Our results suggest that ERBV, EHV-2 and EHV-5 are commonly present in upper airways of healthy racehorses; however, the role they play in the etiology of equine asthma remains unclear.
Collapse
Affiliation(s)
- Laurent Couetil
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kathleen Ivester
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Ropka-Molik K, Stefaniuk-Szmukier M, Szmatoła T, Piórkowska K, Bugno-Poniewierska M. The use of the SLC16A1 gene as a potential marker to predict race performance in Arabian horses. BMC Genet 2019; 20:73. [PMID: 31510920 PMCID: PMC6740031 DOI: 10.1186/s12863-019-0774-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arabian horses are commonly believed to be one of the oldest and the most popular horse breeds in the world, characterized by favourable stamina traits and exercise phenotypes. During intensive training, the rates of lactate production and utilization are critical to avoid muscle fatigue and a decrease in exercise performance. The key factor determining transmembrane lactate transport is the monocarboxylate transporter 1 protein coded for by the SLC16A1 gene. The aim of the present research was to identify polymorphisms in the coding sequence and UTRs in the equine SLC16A1 gene and to evaluate their potential association with race performance traits in Arabian horses. Based on RNA-seq data, SNPs were identified and genotyped using PCR-RFLP or PCR-HRM methods in 254 Arabian horses that competed in flat races. An association analysis between polymorphisms and racing results was performed. RESULTS Novel polymorphisms in the equine SLC16A1 locus have been identified (missense and 5'UTR variants: g.55601543C > T and g.55589063 T > G). Analysis showed a significant association between the 5'UTR polymorphism and several racing results as follows: the possibility of winning first or second place, the number of races in which horses started and total financial benefits. The analysis also showed differences in genotype distribution depending on race distance. In the studied population, the shorter distance races were only won by TT horses. The GG and TG horses took first and second places in middle- and long-distance races, and the percentage of winning heterozygotes increased from 19.5 to 27% at the middle and long distances, respectively. The p.Val432Ile (g.55601543C > T) polymorphism was not significantly related to the analysed racing results. CONCLUSION Our results showed that g.55589063 T > G polymorphism affected the possibility of winning first or second place and of competing in more races. The different distribution of genotypes depending on race distance indicated the possibility of using a SNP in the SLC16A1 gene as a marker to predict the best race distance for a horse. The presented results provide a basis for further research to validate the use of the SLC16A1 gene as a potential marker associated with racing performance.
Collapse
Affiliation(s)
- Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.
| | - Monika Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, University of Agriculture in Cracow, Cracow, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.,University Centre of Veterinary Medicine, University of Agriculture in Cracow, Mickiewicza 24/28, 30-059, Cracow, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.,Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Cracow, Cracow, Poland
| |
Collapse
|
4
|
Ropka-Molik K, Stefaniuk-Szmukier M, Piórkowska K, Szmatoła T, Bugno-Poniewierska M. Molecular characterization of the apoptosis-related SH3RF1 and SH3RF2 genes and their association with exercise performance in Arabian horses. BMC Vet Res 2018; 14:237. [PMID: 30107803 PMCID: PMC6092840 DOI: 10.1186/s12917-018-1567-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis plays an important role in the regulation of healthy tissue growth and development as well as in controlling the maintenance of homeostasis in exercising muscles. During an intensive physical effort, the regulation of cell death by apoptosis results in the replacement of unaccustomed muscle cells by new cells that are better suited to exercise. The aim of this study was to determine the expression of two genes (SH3FR1 and SH3RF2) that control apoptosis in muscle tissues during training periods characterized by different intensities. The gene expression levels were estimated using real-time PCR method in skeletal muscle biopsies collected from 15 Arabian horses (untrained, after an intense gallop phase, and at the end of the racing season). An association study was performed on 250 Arabian horses to assess the effect of the SH3RF2:c.796 T > C (p.Ser266Pro) variant on race performance traits in flat gallop-racing. RESULTS A gene expression analysis confirmed a significant decrease (p < 0.01) in the anti-apoptotic SH3RF2 (POSHER) gene during training periods that differed in intensity. The highest SH3RF2 expression level was detected in the muscles of untrained horses, whereas the lowest expression was identified at the end of the racing season in horses that were fully adapted to the exercise. A non-significant decrease in SH3RF1 gene expression following the training periods was observed. Moreover, a serine substitution by proline at amino acid position 266 (CC genotype) was negatively associated with the probability of winning races, the number of races in which a horse occurred and the financial value of the prizes. Horses with the TT genotype achieved the highest financial benefits, both for total winnings and for winnings per race in which the horses participated. CONCLUSIONS The present study showed the supposed regulation mechanism of exercise-induced apoptosis in horses at the molecular level. The identified SH3RF2: c.796 T > C missense variant was associated with selected racing performance traits, which is important information during the evaluation of horses' exercise predisposition. The association results and frequencies of the CT and TT genotypes suggest the possibility of using SH3RF2 variant in selection to improve the racing performance of Arabian horses.
Collapse
Affiliation(s)
- K Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Kraków, Poland. .,Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - M Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, the University of Agriculture in Cracow, Kraków, Poland
| | - K Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Kraków, Poland
| | - T Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Kraków, Poland
| | - M Bugno-Poniewierska
- Institute of Veterinary Sciences University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
5
|
Kim HA, Kim MC, Kim NY, Ryu DY, Lee HS, Kim Y. Integrated analysis of microRNA and mRNA expressions in peripheral blood leukocytes of Warmblood horses before and after exercise. J Vet Sci 2018; 19:99-106. [PMID: 28927254 PMCID: PMC5799405 DOI: 10.4142/jvs.2018.19.1.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/26/2023] Open
Abstract
Exercise capacity is a valuable trait in horses, and it has been used as a horse selection criterion. Although exercise affects molecular homeostasis and adaptation in horses, the mechanisms underlying these effects are not fully described. This study was carried out to identify changes in the blood profiles of microRNAs (miRNAs) and mRNAs induced by exercise in horse leukocytes. Total RNAs isolated from the peripheral blood leukocytes of four Warmblood horses before and after exercise were subjected to next-generation sequencing (NGS) and microarray analyses to determine the miRNA and mRNA expression profiles, respectively. The expressions of 6 miRNAs, including 4 known and 2 novel miRNAs, were altered by exercise. The predicted target genes of the differentially expressed miRNAs identified by NGS were matched to the exercise-induced mRNAs determined by microarray analysis. Five genes (LOC100050849, LOC100054517, KHDRBS3, LOC100053996, and LOC100062720) from the microarray analysis were matched to the predicted target genes of the 6 miRNAs. The subset of mRNAs and miRNAs affected by exercise in peripheral blood leukocytes may be useful in elucidating the molecular mechanisms of exercise-associated physiology in horses.
Collapse
Affiliation(s)
- Hang-Ah Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Myung-Chul Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Na-Yon Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Doug-Young Ryu
- Laboratory of Environmental Health and Biomarkers, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hong-Seok Lee
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Ricard A, Robert C, Blouin C, Baste F, Torquet G, Morgenthaler C, Rivière J, Mach N, Mata X, Schibler L, Barrey E. Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism. Front Genet 2017; 8:89. [PMID: 28702049 PMCID: PMC5488500 DOI: 10.3389/fgene.2017.00089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/09/2017] [Indexed: 12/17/2022] Open
Abstract
Endurance horses are able to run at more than 20 km/h for 160 km (in bouts of 30-40 km). This level of performance is based on intense aerobic metabolism, effective body heat dissipation and the ability to endure painful exercise. The known heritabilities of endurance performance and exercise-related physiological traits in Arabian horses suggest that adaptation to extreme endurance exercise is influenced by genetic factors. The objective of the present genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) related to endurance racing performance in 597 Arabian horses. The performance traits studied were the total race distance, average race speed and finishing status (qualified, eliminated or retired). We used three mixed models that included a fixed allele or genotype effect and a random, polygenic effect. Quantile-quantile plots were acceptable, and the regression coefficients for actual vs. expected log10p-values ranged from 0.865 to 1.055. The GWAS revealed five significant quantitative trait loci (QTL) corresponding to 6 SNPs on chromosomes 6, 1, 7, 16, and 29 (two SNPs) with corrected p-values from 1.7 × 10-6 to 1.8 × 10-5. Annotation of these 5 QTL revealed two genes: sortilin-related VPS10-domain-containing receptor 3 (SORCS3) on chromosome 1 is involved in protein trafficking, and solute carrier family 39 member 12 (SLC39A12) on chromosome 29 is active in zinc transport and cell homeostasis. These two coding genes could be involved in neuronal tissues (CNS). The other QTL on chromosomes 6, 7, and 16 may be involved in the regulation of the gene expression through non-coding RNAs, CpG islands and transcription factor binding sites. On chromosome 6, a new candidate equine long non-coding RNA (KCNQ1OT1 ortholog: opposite antisense transcript 1 of potassium voltage-gated channel subfamily Q member 1 gene) was predicted in silico and validated by RT-qPCR in primary cultures of equine myoblasts and fibroblasts. This lncRNA could be one element of the cardiac rhythm regulation. Our GWAS revealed that equine performance during endurance races is a complex polygenic trait, and is partially governed by at least 5 QTL: two coding genes involved in neuronal tissues and three other loci with many regulatory functions such as slowing down heart rate.
Collapse
Affiliation(s)
- Anne Ricard
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
- Institut Français du Cheval et de l'Equitation, Département Recherche et InnovationExmes, France
| | - Céline Robert
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
- Ecole Nationale Vétérinaire d'AlfortMaisons Alfort, France
| | - Christine Blouin
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| | - Fanny Baste
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| | - Gwendoline Torquet
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| | - Caroline Morgenthaler
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| | - Julie Rivière
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| | - Nuria Mach
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| | - Xavier Mata
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| | - Laurent Schibler
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| | - Eric Barrey
- Institut National de la Recherche Agronomique, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313 Génétique Animale et Biologie IntégrativeJouy-en-Josas, France
| |
Collapse
|
7
|
Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal 2017; 9:1456-1471. [DOI: 10.1002/dta.2198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tessa Wilkin
- Vet Faculty; University of Sydney; Gunn Building, Sydney University, Camperdown NSW Australia
- Bioanalysis; The National Measurement Institute; 36 Bradfield Rd, Lindfield Sydney New South Wales Australia
| | - Anna Baoutina
- School of Life and Environmental Sciences, Faculty of Science; The University of Sydney; Bradfield Rd West Lindfield New South Wales Australia
| | - Natasha Hamilton
- Faculty of Veterinary Science; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
8
|
Lewczuk D, Hecold M, Ruść A, Frąszczak M, Bereznowski A, Korwin-Kossakowska A, Kamiński S, Szyda J. Single nucleotide polymorphisms associated with osteochondrosis dissecans in Warmblood horses at different stages of training. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The genetic background of osteochondrosis dissecans (OCD) has been studied for years, but the compatibility of the position of markers has not been reached between results, probably because of unknown additional effects that may influence the results, such as definition of the trait, gene–environmental interactions and the dynamics of trait development. The aim of the study was to identify single nucleotide polymorphisms (SNP) associated with the occurrence of OCD in Polish Warmblood sport breed horses in two different stages of training. Warmblood horses (87 stallions and 114 mares) were phenotyped and genotyped. Horses were X-rayed twice, at the beginning and at the end of the tests (100 days for stallions and 60 days for mares). Ten images per horse were collected using digital equipment for the fetlocks, stifles and hocks. The DNA was genotyped using the Illumina Neogen Equine Array. Statistical analysis included the Cochran–Armitage test and logistic regression assuming an additive model of inheritance. The Monte Carlo Markov Chain method was also applied to determine heritability coefficients. Nineteen and twenty SNP were identified that were significantly associated with OCD using logistic regression at the first and second stage of training, respectively. Four SNP were significant for both stages of training. The estimation of the heritability of a horse’s OCD status does not achieve the same level at different stages of training. The study on the genetic background of horse OCD should include as much detailed information on their training as possible.
Collapse
|
9
|
Prospection of genomic regions divergently selected in racing line of Quarter Horses in relation to cutting line. Animal 2014; 8:1754-64. [PMID: 25032727 DOI: 10.1017/s1751731114001761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selection of Quarter Horses for different purposes has led to the formation of lines, including racing and cutting horses. The objective of this study was to identify genomic regions divergently selected in racing line of Quarter Horses in relation to cutting line applying relative extended haplotype homozygosity (REHH) analysis, an extension of extended haplotype homozygosity (EHH) analysis, and the fixation index (F ST) statistic. A total of 188 horses of both sexes, born between 1985 and 2009 and registered at the Brazilian Association of Quarter Horse Breeders, including 120 of the racing line and 68 of the cutting line, were genotyped using single nucleotide polymorphism arrays. On the basis of 27 genomic regions identified as selection signatures by REHH and F ST statistics, functional annotations of genes were made in order to identify those that could have been important during formation of the racing line and that could be used subsequently for the development of selection tools. Genes involved in muscle growth (n=8), skeletal growth (n=10), muscle energy metabolism (n=15), cardiovascular system (n=14) and nervous system (n=23) were identified, including the FKTN, INSR, GYS1, CLCN1, MYLK, SYK, ANG, CNTFR and HTR2B.
Collapse
|
10
|
Genetic analysis of haematological and plasma biochemical parameters in the Spanish purebred horse exercised on a treadmill. Animal 2013; 7:1414-22. [DOI: 10.1017/s1751731113000955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
MCGowan CM. Science in brief: Clinical news from the 8th ICEEP conference 2010. Special topics. Equine Vet J 2012; 44:254-7. [DOI: 10.1111/j.2042-3306.2011.00537.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|