1
|
Yang Y, Alford A, Kozlovskaya V, Zhao S, Joshi H, Kim E, Qian S, Urban V, Cropek D, Aksimentiev A, Kharlampieva E. Effect of temperature and hydrophilic ratio on the structure of poly(N-vinylcaprolactam)-block-poly(dimethylsiloxane)-block-poly(N-vinylcaprolactam) polymersomes. ACS APPLIED POLYMER MATERIALS 2019; 1:722-736. [PMID: 31828238 PMCID: PMC6905513 DOI: 10.1021/acsapm.8b00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosized polymeric vesicles (polymersomes) assembled from ABA triblock copolymers of poly(N-vinylcaprolactam)-poly(dimethylsiloxane)-poly(N-vinylcaprolactam) (PVCL-PDMS-PVCL) are a promising platform for biomedical applications, as the temperature-responsiveness of the PVCL blocks enables reversible vesicle shrinkage and permeability of the polymersome shell at elevated temperatures. Herein, we explore the effects of molecular weight, polymer block weight ratios, and temperature on the structure of these polymersomes via electron microscopy, dynamic light scattering, small angle neutron scattering (SANS), and all-atom molecular dynamic methods. We show that the shell structure and overall size of the polymersome can be tuned by varying the hydrophilic (PVCL) weight fraction of the polymer: at room temperature, polymers of smaller hydrophilic ratios form larger vesicles that have thinner shells, whereas polymers with higher PVCL content exhibit interchain aggregation of PVCL blocks within the polymersome shell above 50 °C. Model fitting and model-free analysis of the SANS data reveals that increasing the mass ratio of PVCL to the total copolymer weight from 0.3 to 0.56 reduces the temperature-induced change in vesicle diameter by a factor of 3 while simultaneously increasing the change in shell thickness by a factor of 1.5. Finally, by analysis of the shell structures and overall size of polymersomes with various PVCL weight ratios and those without temperature-dependent polymer components, we bring into focus the mechanism of temperature-triggered drug release reported in a previous study. This work provides new fundamental perspectives on temperature-responsive polymersomes and elucidates important structure-property relationships of their constituent polymers.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shidi Zhao
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Himanshu Joshi
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Eunjung Kim
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Shuo Qian
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Volker Urban
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Donald Cropek
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Aleksei Aksimentiev
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
2
|
Lu CYD, Komura S, Seki K. Viscoelasticity of two-layer vesicles in solution. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061401. [PMID: 23367944 DOI: 10.1103/physreve.86.061401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The dynamic shape relaxation of the two-layer vesicle is calculated. In addition to the undulation relaxation where the two bilayers move in the same direction, the squeezing mode appears when the gap between the two bilayers is small. At a large gap, the inner vesicle relaxes much faster, whereas the slow mode is mainly due to the outer-layer relaxation. We have calculated the viscoelasticity of the dilute two-layer-vesicle suspension. It is found that for a small gap, the applied shear drives the undulation mode strongly while the slow squeezing mode is not much excited. In this limit, the complex viscosity is dominated by the fast-mode contribution. On the other hand, the slow mode is strongly driven by shear for a larger gap. We have determined the crossover gap, which depends on the interaction between the two bilayers. For a series of samples where the gap is changed systematically, it is possible to observe the two amplitude switchings.
Collapse
Affiliation(s)
- C-Y David Lu
- Department of Chemistry, Center of Theoretical Physics, National Taiwan University, Taipei 106, Taiwan.
| | | | | |
Collapse
|
3
|
Lee JS, Feijen J. Polymersomes for drug delivery: Design, formation and characterization. J Control Release 2012; 161:473-83. [DOI: 10.1016/j.jconrel.2011.10.005] [Citation(s) in RCA: 533] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/06/2023]
|
4
|
Segota S, Tezak D. Spontaneous formation of vesicles. Adv Colloid Interface Sci 2006; 121:51-75. [PMID: 16769012 DOI: 10.1016/j.cis.2006.01.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
his review highlights the relevant issues of spontaneous formation of vesicles. Both the common characteristics and the differences between liposomes and vesicles are given. The basic concept of the molecular packing parameter as a precondition of vesicles formation is discussed in terms of geometrical factors, including the volume and critical length of the amphiphile hydrocarbon chain. According to theoretical considerations, the formation of vesicles occurs in the systems with packing parameters between 1/2 and 1. Using common as well as new methods of vesicle preparation, a variety of structures is described, and their nomenclature is given. With respect to sizes, shapes and inner structures, vesicles structures can be formed as a result of self-organisation of curved bilayers into unilamellar and multilamellar closed soft particles. Small, large and giant uni-, oligo-, or multilamellar vesicles can be distinguished. Techniques for determination of the structure and properties of vesicles are described as visual observations by optical and electron microscopy as well as the scattering techniques, notably dynamic light scattering, small angle X-ray and neutron scattering. Some theoretical aspects are described in short, viz., the scattering and the inverse scattering problem, angular and time dependence of the scattering intensity, the principles of indirect Fourier transformation, and the determination of electron density of the system by deconvolution of p(r) function. Spontaneous formation of vesicles was mainly investigated in catanionic mixtures. A number of references are given in the review.
Collapse
Affiliation(s)
- Suzana Segota
- Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, P.O. Box 163, 10001 Zagreb, Croatia
| | | |
Collapse
|