Doherty MM, Poon K, Tsang C, Pang KS. Transport is not rate-limiting in morphine glucuronidation in the single-pass perfused rat liver preparation.
J Pharmacol Exp Ther 2006;
317:890-900. [PMID:
16464965 DOI:
10.1124/jpet.105.100446]
[Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding, transport, and metabolism are factors that influence morphine (M) removal in the rat liver. For M and the morphine 3beta-glucuronide metabolite (M3G), modest binding existed with 4% bovine serum albumin (unbound fractions of 0.89 +/- 0.07 and 0.98 +/- 0.09, respectively), and there was partitioning of M into red blood cells. Transport studies of M (<750 microM) showed similar, concentration-independent uptake clearances (CLs) of 1.5 ml min(-1) g(-1) among zonal and homogeneous, isolated rat hepatocytes. Transport of M3G, ascertained in multiple indicator dilution studies at various steady-state M3G concentrations (10-262 microM), uncovered a low and concentration-independent influx clearance (<10% of flow rate). The outflow dilution curve of [(3)H]M3G was superimposable onto that of [(14)C]sucrose, the extracellular reference, displaying similarity in transit times (23.5 and 22.2 s), negligible biliary excretion, and almost complete dose recovery from perfusate. In contrast, M3G occurred abundantly in both perfusate and bile in single-pass perfusion studies of the precursor, M, and revealed a biliary clearance of formed M3G that was 12.3-fold that of preformed M3G, suggesting a sinusoidal, diffusional barrier for M3G. With increasing concentrations of M (9-474 microM), clearance decreased, and metabolism and biliary excretion displayed concentration-dependent kinetics. Fitting of the data to a physiologically based liver model revealed that M removal mechanisms were saturable, with a K(m,met) of 52.2 microM and V(max,met) of 58.8 nmol min(-1) g(-1) for metabolism, and a K(m,ex) of 41.2 microM and V(max,ex) of 8.1 nmol min(-1) g(-1) for excretion. Sinusoidal transport was not rate-limiting for M removal.
Collapse