1
|
Houël E, Ginouves M, Azas N, Bourreau E, Eparvier V, Hutter S, Knittel-Obrecht A, Jahn-Oyac A, Prévot G, Villa P, Vonthron-Sénécheau C, Odonne G. Treating leishmaniasis in Amazonia, part 2: Multi-target evaluation of widely used plants to understand medicinal practices. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115054. [PMID: 35131338 DOI: 10.1016/j.jep.2022.115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leishmaniasis are widely distributed among tropical and subtropical countries, and remains a crucial health issue in Amazonia. Indigenous groups across Amazonia have developed abundant knowledge about medicinal plants related to this pathology. AIM OF THE STUDY We intent to explore the weight of different pharmacological activities driving taxa selection for medicinal use in Amazonian communities. Our hypothesis is that specific activity against Leishmania parasites is only one factor along other (anti-inflammatory, wound healing, immunomodulating, antimicrobial) activities. MATERIALS AND METHODS The twelve most widespread plant species used against leishmaniasis in Amazonia, according to their cultural and biogeographical importance determined through a wide bibliographical survey (475 use reports), were selected for this study. Plant extracts were prepared to mimic their traditional preparations. Antiparasitic activity was evaluated against promastigotes of reference and clinical New-World strains of Leishmania (L. guyanensis, L. braziliensis and L. amazonensis) and L. amazonensis intracellular amastigotes. We concurrently assessed the extracts immunomodulatory properties on PHA-stimulated human PBMCs and RAW264.7 cells, and on L. guyanensis antigens-stimulated PBMCs obtained from Leishmania-infected patients, as well as antifungal activity and wound healing properties (human keratinocyte migration assay) of the selected extracts. The cytotoxicity of the extracts against various cell lines (HFF1, THP-1, HepG2, PBMCs, RAW264.7 and HaCaT cells) was also considered. The biological activity pattern of the extracts was represented through PCA analysis, and a correlation matrix was calculated. RESULTS Spondias mombin L. bark and Anacardium occidentale L. stem and leaves extracts displayed high anti-promatigotes activity, with IC50 ≤ 32 μg/mL against L. guyanensis promastigotes for S. mombin and IC50 of 67 and 47 μg/mL against L. braziliensis and L. guyanensis promastigotes, respectively, for A. occidentale. In addition to the antiparasitic effect, antifungal activity measured against C. albicans and T. rubrum (MIC in the 16-64 μg/mL range) was observed. However, in the case of Leishmania amastigotes, the most active species were Bixa orellana L. (seeds), Chelonantus alatus (Aubl.) Pulle (leaves), Jacaranda copaia (Aubl.) D. Don. (leaves) and Plantago major L. (leaves) with IC50 < 20 μg/mL and infection rates of 14-25% compared to the control. Concerning immunomodulatory activity, P. major and B. orellana were highlighted as the most potent species for the wider range of cytokines in all tested conditions despite overall contrasting results depending on the model. Most of the species led to moderate to low cytotoxic extracts except for C. alatus, which exhibited strong cytotoxic activity in almost all models. None of the tested extracts displayed wound healing properties. CONCLUSIONS We highlighted pharmacologically active extracts either on the parasite or on associated pathophysiological aspects, thus supporting the hypothesis that antiparasitic activities are not the only biological factor useful for antileishmanial evaluation. This result should however be supplemented by in vivo studies, and attracts once again the attention on the importance of the choice of biological models for an ethnophamacologically consistent study. Moreover, plant cultural importance, ecological status and availability were discussed in relation with biological results, thus contributing to link ethnobotany, medical anthropology and biology.
Collapse
Affiliation(s)
- Emeline Houël
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, 97300, Cayenne, France.
| | - Marine Ginouves
- TBIP, Université de Guyane, 97300, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Eliane Bourreau
- Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP6010, 97306, Cayenne Cedex, French Guiana
| | - Véronique Eparvier
- CNRS - Institut de Chimie des Substances Naturelles, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Adeline Knittel-Obrecht
- Plate-forme de Chimie Biologique Intégrative de Strasbourg UAR 3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412, Illkirch Cedex, France
| | - Arnaud Jahn-Oyac
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, 97300, Cayenne, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, 97300, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Pascal Villa
- Plate-forme de Chimie Biologique Intégrative de Strasbourg UAR 3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412, Illkirch Cedex, France
| | - Catherine Vonthron-Sénécheau
- Laboratoire d'Innovation Thérapeutique UMR 7200 CNRS - Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Guillaume Odonne
- Laboratoire Ecologie, évolution, interactions des systèmes amazoniens (LEEISA), CNRS, Université de Guyane, IFREMER, 97300, Cayenne, French Guiana
| |
Collapse
|
2
|
Millones-Gómez PA, De la Garza-Ramos MA, Urrutia-Baca VH, Hernandez-Martinez HC, Hernández Marín DA, Minchón Medina CA. Cytotoxicity of Peruvian propolis and Psidium guajava on human gingival fibroblasts, PBMCs and HeLa cells. F1000Res 2022; 11:430. [PMID: 36051851 PMCID: PMC9386296 DOI: 10.12688/f1000research.110352.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
It is indisputable that every day it is demonstrated that natural products present diverse therapeutic benefits, which has boosted their incorporation within various products for clinical use. However, this must be accompanied by knowledge of their effect on cell lines to ensure their use is safe. The objective of this study was to evaluate the cytotoxic effect of two ethanolic extracts based on Peruvian natural products, on three human cell lines. Cervical cancer cell lines (HeLa), human gingival fibroblasts (HGF-1 - ATCC CRL-2014) (HGF-1) and peripheral blood mononuclear cells (PBMCs) were cultured and subsequently treated with preparations of ethanolic extracts of propolis (EEP) and Psidium guajava (EEG) from a concentration of 50 mg/mL to 0.024 mg/mL, by the 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazole bromide reduction assay. At a concentration of 0.24 mg/mL EEG, viability of 99.7±1.24%, 99.8±2.2% and 99.7±2.7% was observed in HeLa, HGF-1 and PBMCs, respectively; >90% cell viability values were observed with EPP at 0.024 mg/mL, with HGF-1 showing the highest viability (96.9±1.15%). A dose-dependent effect was observed for both extracts with a decrease in cell viability as concentrations increased (up to 50 mg/mL). EEP and EEG extracts at low concentrations do not show cytotoxicity in human cell lines, these findings are an advance in the preclinical evaluation on their safety and open a continuity to further studies for their potential applications in dentistry and medicine.
Collapse
Affiliation(s)
| | | | - Victor Hugo Urrutia-Baca
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología/ CIDICS/UOIE, Universidad Autónoma de Nuevo León, Monterrey, 64000, Mexico
| | - Humberto Carlos Hernandez-Martinez
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología/ CIDICS/UOIE, Universidad Autónoma de Nuevo León, Monterrey, 64000, Mexico
| | - David Alejandro Hernández Marín
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, 20100, Mexico
| | - Carlos Alberto Minchón Medina
- Department of Statistics, Faculty of Physical Sciences and Mathematics, Universidad Nacional de Trujillo, Trujillo, 13001, Peru
| |
Collapse
|
3
|
Millones-Gómez PA, De la Garza-Ramos MA, Urrutia-Baca VH, Hernandez-Martinez HC, Hernández Marín DA, Minchón Medina CA. Cytotoxicity of Peruvian propolis and Psidium guajava on human gingival fibroblasts, PBMCs and HeLa cells. F1000Res 2022; 11:430. [PMID: 36051851 PMCID: PMC9386296 DOI: 10.12688/f1000research.110352.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/03/2023] Open
Abstract
It is indisputable that every day it is demonstrated that natural products present diverse therapeutic benefits, which has boosted their incorporation within various products for clinical use. However, this must be accompanied by knowledge of their effect on cell lines to ensure their use is safe. The objective of this study was to evaluate the cytotoxic effect of two ethanolic extracts based on Peruvian natural products, on three human cell lines. Cervical cancer cell lines (HeLa), human gingival fibroblasts (HGF-1 - ATCC CRL-2014) (HGF-1) and peripheral blood mononuclear cells (PBMCs) were cultured and subsequently treated with preparations of ethanolic extracts of propolis (EEP) and Psidium guajava (EEG) from a concentration of 50 mg/mL to 0.024 mg/mL, by the 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazole bromide reduction assay. At a concentration of 0.24 mg/mL EEG, viability of 99.7±1.24%, 99.8±2.2% and 99.7±2.7% was observed in HeLa, HGF-1 and PBMCs, respectively; >90% cell viability values were observed with EPP at 0.024 mg/mL, with HGF-1 showing the highest viability (96.9±1.15%). A dose-dependent effect was observed for both extracts with a decrease in cell viability as concentrations increased (up to 50 mg/mL). EEP and EEG extracts at low concentrations do not show cytotoxicity in human cell lines, these findings are an advance in the preclinical evaluation on their safety and open a continuity to further studies for their potential applications in dentistry and medicine.
Collapse
Affiliation(s)
| | | | - Victor Hugo Urrutia-Baca
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología/ CIDICS/UOIE, Universidad Autónoma de Nuevo León, Monterrey, 64000, Mexico
| | - Humberto Carlos Hernandez-Martinez
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología/ CIDICS/UOIE, Universidad Autónoma de Nuevo León, Monterrey, 64000, Mexico
| | - David Alejandro Hernández Marín
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, 20100, Mexico
| | - Carlos Alberto Minchón Medina
- Department of Statistics, Faculty of Physical Sciences and Mathematics, Universidad Nacional de Trujillo, Trujillo, 13001, Peru
| |
Collapse
|
4
|
Magnavacca A, Sangiovanni E, Racagni G, Dell'Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med Res Rev 2022; 42:897-945. [PMID: 34725836 PMCID: PMC9298305 DOI: 10.1002/med.21866] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.
Collapse
Affiliation(s)
- Andrea Magnavacca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| |
Collapse
|
5
|
Santos LA, Rosalen PL, Dias NA, Grisolia JC, Nascimento Gomes BJ, Blosfeld-Lopes L, Ikegaki M, Alencar SMD, Burger E. Brazilian Red Propolis shows antifungal and immunomodulatory activities against Paracoccidioides brasiliensis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114181. [PMID: 33991639 DOI: 10.1016/j.jep.2021.114181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in South America and especially in Brazil with severe clinical consequences that need broadened therapeutic options. Propolis is a natural resin from bees used in folk medicine for centuries with the first report in the ancient history of Egypt by Eberly papyrus, in Middle-Ages used to wash the newborn's umbilical cord and World War II as antiseptic or antibiotics. Nowadays it is a natural product worldwide consumed as food and traditionally used for oral and systemic diseases as an anti-inflammatory, antimicrobial, antifungal, and other diseases. Brazilian red propolis (BRP) is a new type of propolis with a distinguished chemical profile and biological activities from propolis (green) with pharmacological properties such as antimicrobial, anti-inflammatory, antioxidant, and others. AIM OF STUDY Thus, the main purpose of this study was to investigate the direct in vitro and ex vivo effect of BRP on Paracoccidioides brasiliensis. MATERIAL AND METHODS Antifungal activity of different concentrations of BRP on a virulent P. brasiliensis isolate (Pb18) was evaluated using the microdilution technique. Also, mice splenic cells co-cultured with Pb18 were treated with BRP at different times and concentrations (only Pb18 = negative control). Mice were inoculated with Pb18 and treated with different concentrations of BRP (50-500 mg/mL) in a subcutaneous air pouch. In this later experimental model, macroscopic characteristics of the air pouch were evaluated, and cellular exudate was collected and analyzed for cellular composition, mitochondrial activity, total protein reactive oxygen specimens (ROS), and nitric oxide production, as well as the number of viable fungal cells. RESULTS The in vitro experiments showed remarkable direct antifungal activity of BRP, mainly with the highest concentration employed (500 mg/mL), reducing the number of viable cells to 10% of the original inoculum after 72 h incubation. The splenocytes co-cultivation assays showed that BRP had no cytotoxic effect on these cells, on the contrary, exerted a stimulatory effect. This stimulation was also observed on the PMNs at the air pouch, as verified by production of ROS and total proteins and mitochondrial activity. This activation resulted in enhanced fungicidal activity, mainly with the 500 mg/mL concentration of BRP. An anti-inflammatory effect was also detected, as verified by the smaller volume of the BRP-treated air pouch as well as by an earlier shift from neutrophils to mononuclear cells present in the infection site. CONCLUSION Our results strongly suggest, for the first time in the literature, that Brazilian Red propolis has four protective mechanisms in experimental paracoccidioidomycosis: activating neutrophils, exerting a direct antifungal effect, preventing fungal dissemination, and controlling excessive inflammation process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo - USP. Piracicaba, SP, Brazil.
| | - Eva Burger
- Federal University of Alfenas - UNIFAL. Alfenas, MG, Brazil.
| |
Collapse
|
6
|
Jain S, Baranwal M. Conserved immunogenic peptides of Ebola glycoprotein elicit immune response in human peripheral blood mononuclear cells. Microbiol Immunol 2021; 65:505-511. [PMID: 34343363 DOI: 10.1111/1348-0421.12935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/24/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
In the past 45 years, ebolaviruses have periodically caused epidemics on the African continent. In December 2019, approval of a recombinant vector-based EBOV vaccine, named Ervebo, came as encouraging news; still, there is a long way to go in the development of an accessible, global, and pan-ebolavirus vaccine. The current study expanded our previous in silico work which was conducted on ebolavirus glycoprotein and this resulted in the identification of three potentially immunogenic peptides (P1 - FKRTSFFLWVIILFQRTFSIPL, P2 - LANETTQALQLF, and P3 - RATTELRTFSILNRKAIDF). An analysis to estimate the number of expected human leukocyte antigen (HLA) responders revealed that P1, P2, and P3 can potentially interact with 2540, 2150, and 2802 HLA alleles, respectively. Further, these peptides were subject to in vitro analysis wherein the human peripheral blood mononuclear cell proliferation and interferon-gamma (IFN-γ) production by peptide stimulated cells was studied in 10 healthy human blood samples with the help of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and a sandwich enzyme-linked immunosorbent assay (ELISA) respectively. P3 presented the best results, a significant (P < 0.05) peptide induced cell proliferation and IFN-γ stimulation for 8 and 10 samples, respectively, followed by P1 (5 and 6) and P2 (5 and 7). The in silico and in vitro results obtained in this study indicate the immunogenic potential of these peptides and warrant exploration of the effects on other cytokines as well as in vivo experimental validation.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.,University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
7
|
Yosri N, Abd El-Wahed AA, Ghonaim R, Khattab OM, Sabry A, Ibrahim MAA, Moustafa MF, Guo Z, Zou X, Algethami AFM, Masry SHD, AlAjmi MF, Afifi HS, Khalifa SAM, El-Seedi HR. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods 2021; 10:1776. [PMID: 34441553 PMCID: PMC8391193 DOI: 10.3390/foods10081776] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CLpro (ΔG = -9.4 kcal/mol), RdRp (-7.5), RBD (-7.2), NSP13 (-9.4), and ACE2 (-10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (-8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.
Collapse
Affiliation(s)
- Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Reem Ghonaim
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Omar M. Khattab
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Aya Sabry
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mahmoud F. Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
| | | | - Saad H. D. Masry
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria 21934, Egypt;
- Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Al Ain 52150, United Arab Emirates
| | - Mohamed F. AlAjmi
- Pharmacognosy Group, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hanan S. Afifi
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates;
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Division of Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
| |
Collapse
|
8
|
de L Paula LA, Cândido ACBB, Santos MFC, Caffrey CR, Bastos JK, Ambrósio SR, Magalhães LG. Antiparasitic Properties of Propolis Extracts and Their Compounds. Chem Biodivers 2021; 18:e2100310. [PMID: 34231306 DOI: 10.1002/cbdv.202100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Cândido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão Preto, SP, Brazil
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Asfaram S, Fakhar M, Keighobadi M, Akhtari J. Promising Anti-Protozoan Activities of Propolis (Bee Glue) as Natural Product: A Review. Acta Parasitol 2021; 66:1-12. [PMID: 32691360 DOI: 10.1007/s11686-020-00254-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Propolis (bee glue) is a resinous mixture of different plant exudates that possesses a wide range of biological and antimicrobial activities and has been used as a food supplement and in complementary medicine for centuries. Some researchers have proposed that propolis could be a potential curative compound against microbial agents such as protozoan parasitic infections by different and occasionally unknown mechanisms due to the immunoregulatory function and antioxidant capacity of this natural product. METHODS In this review, we concentrate on in vitro and in vivo anti-protozoan activities of propolis extracts/fractions in the published literature. RESULTS In Leishmania, propolis inhibits the proliferation of promastigotes and produces an anti-inflammatory effect via the inhibition of nitric oxide (NO) production. In addition, it increases macrophage activation, TLR-2, TNF-α, IL-4, IL-17 production, and downregulation of IL-12. In Plasmodium and Trypanosoma, propolis inhibits the parasitemia, improving anemia and increasing the IFN-γ, TNF-α, and GM-CSF cytokines levels, most likely due to its strong immunomodulatory activity. Moreover, propolis extract arrests proliferation of T. cruzi, because it has aromatic acids and flavonoids. In toxoplasmosis, propolis increases the specific IgM and IgG titers via decreasing the serum IFN-γ, IL-1, and IL-6 cytokines levels in the rats infected with T. gondii. In Cryptosporidium and Giardia, it decreases oocysts shedding due to phytochemical constituents, particularly phenolic compounds, and increases the number of goblet cells. Propolis inhibits the growth of Blastocystis, possibly by apoptotic mechanisms like metronidazole. Unfortunately, the mechanism action of propolis' anti-Trichomonas and anti-Acanthamoeba is not well-known yet. CONCLUSION Reviewing the related literature could highlight promising antimicrobial activities of propolis against intracellular and extracellular protozoan parasites; this could shed light on the exploration of more effective drugs for the treatment of protozoan parasitic infections in the near future.
Collapse
Affiliation(s)
- Shabnam Asfaram
- Research Center for Zoonoses, Parasitic and Microbial Diseases, Ardabil University of Medical Sciences, Ardabil, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Masoud Keighobadi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Ebiloma GU, Ichoron N, Siheri W, Watson DG, Igoli JO, De Koning HP. The Strong Anti-Kinetoplastid Properties of Bee Propolis: Composition and Identification of the Active Agents and Their Biochemical Targets. Molecules 2020; 25:E5155. [PMID: 33167520 PMCID: PMC7663965 DOI: 10.3390/molecules25215155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The kinetoplastids are protozoa characterized by the presence of a distinctive organelle, called the kinetoplast, which contains a large amount of DNA (kinetoplast DNA (kDNA)) inside their single mitochondrion. Kinetoplastids of medical and veterinary importance include Trypanosoma spp. (the causative agents of human and animal African Trypanosomiasis and of Chagas disease) and Leishmania spp. (the causative agents of the various forms of leishmaniasis). These neglected diseases affect millions of people across the globe, but drug treatment is hampered by the challenges of toxicity and drug resistance, among others. Propolis (a natural product made by bees) and compounds isolated from it are now being investigated as novel treatments of kinetoplastid infections. The anti-kinetoplastid efficacy of propolis is probably a consequence of its reported activity against kinetoplastid parasites of bees. This article presents a review of the reported anti-kinetoplastid potential of propolis, highlighting its anti-kinetoplastid activity in vitro and in vivo regardless of geographical origin. The mode of action of propolis depends on the organism it is acting on and includes growth inhibition, immunomodulation, macrophage activation, perturbation of the cell membrane architecture, phospholipid disturbances, and mitochondrial targets. This gives ample scope for further investigations toward the rational development of sustainable anti-kinetoplastid drugs.
Collapse
Affiliation(s)
- Godwin U. Ebiloma
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Nahandoo Ichoron
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
| | - Weam Siheri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - John O. Igoli
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
11
|
Alvarez-Suarez JM. The Chemical and Biological Properties of Propolis. BEE PRODUCTS - CHEMICAL AND BIOLOGICAL PROPERTIES 2017. [PMCID: PMC7123330 DOI: 10.1007/978-3-319-59689-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Parasite Killing of Leishmania (V) braziliensis by Standardized Propolis Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6067172. [PMID: 28690662 PMCID: PMC5485350 DOI: 10.1155/2017/6067172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022]
Abstract
Treatments based on antimonials to cutaneous leishmaniasis (CL) entail a range of toxic side effects. Propolis, a natural compound widely used in traditional medical applications, exhibits a range of biological effects, including activity against infectious agents. The aim of this study was to test the potential leishmanicidal effects of different propolis extracts against Leishmania (Viannia) braziliensis promastigotes and intracellular amastigotes in vitro. Stationary-phase L. (V) braziliensis promastigotes were incubated with medium alone or treated with dry, alcoholic, or glycolic propolis extract (10, 50, or 100 μg/mL) for 96 h. Our data showed that all extracts exhibited a dose-dependent effect on the viability of L. (V) braziliensis promastigotes, while controlling the parasite burden inside infected macrophages. Dry propolis extract significantly modified the inflammatory profile of murine macrophages by downmodulating TGF-β and IL-10 production, while upmodulating TNF-α. All three types of propolis extract were found to reduce nitric oxide and superoxide levels in activated L. braziliensis-infected macrophages. Altogether, our results showed that propolis extracts exhibited a leishmanicidal effect against both stages of L. (V) braziliensis. The low cell toxicity and efficient microbicidal effect of alcoholic or glycolic propolis extracts make them candidates to an additive treatment for cutaneous leishmaniasis.
Collapse
|
13
|
dos Santos Thomazelli APF, Tomiotto-Pellissier F, da Silva SS, Panis C, Orsini TM, Cataneo AHD, Miranda-Sapla MM, Custódio LA, Tatakihara VLH, Bordignon J, Silveira GF, Sforcin JM, Pavanelli WR, Conchon-Costa I. Brazilian propolis promotes immunomodulation on human cells from American Tegumentar Leishmaniasis patients and healthy donors infected with L. braziliensis. Cell Immunol 2017; 311:22-27. [DOI: 10.1016/j.cellimm.2016.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 01/25/2023]
|
14
|
Gonzalez-Fajardo L, Fernández OL, McMahon-Pratt D, Saravia NG. Ex vivo host and parasite response to antileishmanial drugs and immunomodulators. PLoS Negl Trop Dis 2015; 9:e0003820. [PMID: 26024228 PMCID: PMC4449175 DOI: 10.1371/journal.pntd.0003820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 05/10/2015] [Indexed: 11/17/2022] Open
Abstract
Background Therapeutic response in infectious disease involves host as well as microbial determinants. Because the immune and inflammatory response to Leishmania (Viannia) species defines the outcome of infection and efficacy of treatment, immunomodulation is considered a promising therapeutic strategy. However, since Leishmania infection and antileishmanial drugs can themselves modulate drug transport, metabolism and/or immune responses, immunotherapeutic approaches require integrated assessment of host and parasite responses. Methodology To achieve an integrated assessment of current and innovative therapeutic strategies, we determined host and parasite responses to miltefosine and meglumine antimoniate alone and in combination with pentoxifylline or CpG 2006 in peripheral blood mononuclear cells (PBMCs) of cutaneous leishmaniasis patients. Parasite survival and secretion of TNF-α, IFN-γ, IL-10 and IL-13 were evaluated concomitantly in PBMCs infected with Luc-L. (V.) panamensis exposed to meglumine antimoniate (4, 8, 16, 32 and 64 μg SbV/mL) or miltefosine (2, 4, 8, 16 and 32 μM HePC). Concentrations of 4 μM of miltefosine and 8 μg SbV/mL were selected for evaluation in combination with immunomodulators based on the high but partial reduction of parasite burden by these antileishmanial concentrations without affecting cytokine secretion of infected PBMCs. Intracellular parasite survival was determined by luminometry and cytokine secretion measured by ELISA and multiplex assays. Principal Findings Anti- and pro-inflammatory cytokines characteristic of L. (V.) panamensis infection were evaluable concomitantly with viability of Leishmania within monocyte-derived macrophages present in PBMC cultures. Both antileishmanial drugs reduced the parasite load of macrophages; miltefosine also suppressed IL-10 and IL-13 secretion in a dose dependent manner. Pentoxifylline did not affect parasite survival or alter antileishmanial effects of miltefosine or meglumine antimoniate. However, pentoxifylline diminished secretion of TNF-α, IFN-γ and IL-13, cytokines associated with the outcome of infection by species of the Viannia subgenus. Exposure to CpG diminished the leishmanicidal effect of meglumine antimoniate, but not miltefosine, and significantly reduced secretion of IL -10, alone and in combination with either antileishmanial drug. IL-13 increased in response to CpG plus miltefosine. Conclusions and Significance Human PBMCs allow integrated ex vivo assessment of antileishmanial treatments, providing information on host and parasite determinants of therapeutic response that may be used to tailor therapeutic strategies to optimize clinical resolution. Host determinants of the response to infection have increasingly been recognized as therapeutically relevant targets. Despite the pathogenesis of dermal leishmaniasis being mediated by the immune and inflammatory response, in vitro anti-leishmanial drug screening has been based on antimicrobial effect without consideration of effects on the host response. The results of this study show that peripheral blood mononuclear cells from patients allow an integrated evaluation of both antimicrobial efficacy and host response to drugs, immunomodulatory agents, and their combinations. This integrated approach to defining treatment strategies based on host and parasite responses opens the way for the optimization and tailoring of treatment to different clinical circumstances.
Collapse
Affiliation(s)
- Laura Gonzalez-Fajardo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Olga Lucía Fernández
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Diane McMahon-Pratt
- Yale University School of Public Health, New Haven, Connecticut, United States of America
| | - Nancy Gore Saravia
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| |
Collapse
|
15
|
Nitric oxide and Brazilian propolis combined accelerates tissue repair by modulating cell migration, cytokine production and collagen deposition in experimental leishmaniasis. PLoS One 2015; 10:e0125101. [PMID: 25973801 PMCID: PMC4431861 DOI: 10.1371/journal.pone.0125101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 11/19/2022] Open
Abstract
The fact that drugs currently used in the treatment of Leishmania are highly toxic and associated with acquired resistance has promoted the search for new therapies for treating American tegumentary leishmaniasis (ATL). In this study, BALB/c mice were injected in the hind paw with Leishmania (Leishmania) amazonensis and subsequently treated with a combination of nitric oxide (NO) donor (cis-[Ru(bpy) 2imN(NO)](PF6)3) (Ru-NO), given by intraperitoneal injection, and oral Brazilian propolis for 30 days. Ru-NO reached the center of the lesion and increased the NO level in the injured hind paw without lesion exacerbation. Histological and immunological parameters of chronic inflammation showed that this combined treatment increased the efficacy of macrophages, determined by the decrease in the number of parasitized cells, leading to reduced expression of proinflammatory and tissue damage markers. In addition, these drugs in combination fostered wound healing, enhanced the number of fibroblasts, pro-healing cytokines and induced collagen synthesis at the lesion site. Overall, our findings suggest that the combination of the NO donor Ru-NO and Brazilian propolis alleviates experimental ATL lesions, highlighting a new therapeutic option that can be considered for further in vivo investigations as a candidate for the treatment of cutaneous leishmaniasis.
Collapse
|
16
|
Antioxidant action of propolis on mouse lungs exposed to short-term cigarette smoke. Bioorg Med Chem 2013; 21:7570-7. [DOI: 10.1016/j.bmc.2013.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/19/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022]
|
17
|
Brazilian propolis antileishmanial and immunomodulatory effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:673058. [PMID: 23762152 PMCID: PMC3670560 DOI: 10.1155/2013/673058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/12/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
The antileishmanial and immunomodulatory effects of propolis collected in Botucatu, São Paulo State, Brazil, were evaluated in Leishmania (Viannia) braziliensis experimental infection. The antileishmanial effect of propolis on promastigote forms was verified by reducing growth and by promoting morphologic alterations observed by scanning electron microscopy. In in vitro immunomodulatory assays, macrophages were pretreated with propolis and then infected with L. (V.) braziliensis. In vivo, supernatants from liver cells and peritoneal exudate of BALB/c mice pretreated with propolis and infected with Leishmania (107/mL promastigotes) were collected, and TNF-α and IL-12 were measured by ELISA. Macrophages incubated with propolis showed a significant increase in interiorization and further killing of parasites. An increased TNF-α production was seen in mice pretreated with propolis, whereas IL-12 was downregulated during the infection. In conclusion, Brazilian propolis showed a direct action on the parasite and displayed immunomodulatory effects on murine macrophages, even though the parasite has been reported to affect the activation pathways of the cell. The observed effects could be associated with the presence of phenolic compounds (flavonoids, aromatic acids, and benzopyranes), di- and triterpenes, and essential oils found in our propolis sample.
Collapse
|
18
|
Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, Li M, Xing EH, Lan TF, Jiang MM, Yang N, Li WD. Ganoderma lucidum polysaccharides counteract inhibition on CD71 and FasL expression by culture supernatant of B16F10 cells upon lymphocyte activation. Exp Ther Med 2013; 5:1117-1122. [PMID: 23596479 PMCID: PMC3628224 DOI: 10.3892/etm.2013.931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/23/2013] [Indexed: 12/19/2022] Open
Abstract
Immune responses to tumor-associated antigens are often detectable in tumor-bearing hosts, but they fail to eliminate malignant cells or prevent development of metastases. Tumor cells produce factors such as interleukin-10, transforming growth factor-β1 and vascular endothelial growth factor (VEGF) that suppress the function of immune cells or induce apoptosis of immune cells. Culture supernatant of tumor cells may contain these immunosuppressive factors which suppress lymphocyte activation. CD71 and FasL are two important molecules that are expressed upon lymphocyte activation. Counteraction against suppression CD71 and FasL expression upon lymphocyte activation may benefit tumor control. A potential component with this effect is Ganoderma lucidum polysaccharides (Gl-PS). In this study, Gl-PS was used on lymphocytes incubating with culture supernatant of B16F10 melanoma cells (B16F10-CS) in the presence of phytohemagglutinin. Following induction with phytohemagglutinin, B16F10-CS suppressed CD71 expression in lymphocytes (as detected by immunofluorescence and flow cytometry), proliferation in lymphocytes (as detected by MTT assay), and FasL expression in lymphocytes (as detected by immunocytochemistry and western blot analysis), while Gl-PS fully or partially counteracted these suppressions. Gl-PS showed counteractive effects against suppression induced by B16F10-CS on CD71 and FasL expression upon lymphocyte activation, suggesting the potential of Gl-PS to facilitate cancer immunotherapy.
Collapse
Affiliation(s)
- Li-Xin Sun
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|