1
|
Li Y, Zhang Z, Abbaspourrad A. Improved pH stability, heat stability, and functionality of phycocyanin after PEGylation. Int J Biol Macromol 2022; 222:1758-1767. [PMID: 36195233 DOI: 10.1016/j.ijbiomac.2022.09.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
Abstract
Phycocyanin (PC), a spirulina-derived protein-chromophore complex, suffers from poor techno-functional properties and is highly susceptible to aggregation and color changes upon heating and pH fluctuations. We tackled these issues by modifying PC via PEGylation. Electrophoresis and Fourier transform infrared spectroscopy proved successful conjugation of methoxy PEG (mPEG) chains on PC after PEGylation. Circular dichroism indicated highly ordered folding states adopted by PEGylated PC, which we attributed to the mPEG chains on the protein surface that sterically stabilized the protein structure. Consequently, the mPEG-PC conjugates exhibited high blue color intensity and improved thermodynamic stability. Further, benefit from an electrostatic shielding effect of mPEG chains, surface charges of PEGylated PC were neutralized over pH 2-9 and the blue hue of PC was stabilized against pH variations. Additionally, the flexible and hydrophilic mPEG polymers on the PC surface promoted protein-protein and protein-water interactions. PEGylated PC thus gained increased protein solubility, techno-functionality (emulsifying, foaming, and gelling performance), and antioxidant activities, when compared to unmodified PC. Heat-induced gels formed by mPEG-PC conjugates exhibited increased stiffness, higher water retention, and weak gel-type rheological properties. After PEGylation, the improved functional properties, bioactivity, and color stability against heat and pH fluctuations will facilitate food and pharmaceutical applications of PC.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Zhong Zhang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Pustake SO, Bhagwat P, Pillai S, Dandge PB. Purification and characterisation of uricase from Bacillus subtilis SP6. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Wang J, Zhang L, Rao J, Yang L, Yang X, Liao F. Design of Bacillus fastidious Uricase Mutants Bearing Long Lagging Phases Before Exponential Decreases of Activities Under Physiological Conditions. Protein J 2021; 40:765-775. [PMID: 34014494 DOI: 10.1007/s10930-021-09999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
Under physiological conditions, Bacillus fastidious uricase (BFU) activity shows negligible lagging phase before the exponential decrease; mutants are thus designed for long lagging phases before exponential activity decreases. On homodimer surface of BFU (4R8X.pdb), the last fragment ANSEYVAL at the C-terminus forms a loop whose Y319 is H-bonded by the buried D257 in the same monomer. Within 1.5 nm from the α-carboxyl group of the last leucine (L322), E30, K26, D257, R258, E311, K312 and E318 from the same monomer plus D126 and K127 from a monomer of the other homodimer generate an electrostatic interaction network. Within 1.5 nm from Y319, D307 and R310 in the same monomer interact with ionized residues around the inter-chain β-sheet in the same homodimer. Mutagenesis of Y319R is designed to strengthen the original interactions and concomitantly generate new electrostatic attractions between homodimers. Under physiological conditions, the mutant V144A/Y319R showed an approximately 4 week lagging phase before the exponential activity decrease, an apparent half-life of activity nearly three folds of mutant V144A, but comparable activity. The introduction of ionizable residues into the C-terminus contacting the other homodimer for additional and/or stronger electrostatic attractions between homodimers may be a universal approach to thermostable mutants of uricases.
Collapse
Affiliation(s)
- Jiaqi Wang
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China.,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Luyao Zhang
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China.,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jingjing Rao
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Li Yang
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China.,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Fei Liao
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China. .,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China. .,Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Pegylated catalase as a potential alternative to treat vitiligo and UV induced skin damage. Bioorg Med Chem 2021; 30:115933. [PMID: 33333446 DOI: 10.1016/j.bmc.2020.115933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
The metabolic function of catalase (CAT) is to prevent oxidative damage to tissues through the hydrolysis of hydrogen peroxide, which is a strong oxidizing agent. It has been suggested as an alternative to treat skin diseases related to oxidative stress, such as vitiligo. Owing to the instability associated to the protein nature, topical use of CAT is challenging and, in this sense, PEGylation can be an interesting alternative. Here, we conjugated CAT to methoxy-poly(ethylene oxide) (mPEG) of 10, 20 and 40 kDa, by means of a nucleophilic attack of ε-amino groups to an electron-deficient carbonyl group of the reactive PEG, resulting in site specifically PEGylated bioconjugates. PEGylation yields ranged from 31% ± 2% for CAT-PEG40 to 59% ± 4% for CAT-PEG20 and were strongly affected by the reaction pH owing to the protonation/deprotonation state of primary amines of lysine and N-terminal residues. PEGylated conjugates were purified by size-exclusion chromatography (purity > 95%) and characterized by circular dichroism. Irrespectively of MW, PEG did not affected CAT secondary and tertiary structure, but a decrease in specific activity was observed, more pronounced when PEGs of higher MWs were used. However, this loss of activity is compensated by the increased long-term stability, with a gain of >5 times in t1/2. In vitro antioxidant activity of CAT-PEG20 showed complete elimination of lipid peroxidation at the skin upper layer (stratum corneum) suitable for a topical use to treat vitiligo, as well as other skin conditions related to oxidative stress.
Collapse
|
5
|
Characterisation of recombinant factor IX before and after GlycoPEGylation. Int J Pharm 2020; 588:119654. [PMID: 32693290 DOI: 10.1016/j.ijpharm.2020.119654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
The effect of the GlycoPEGylation process used for prolonging the half-life of recombinant factor IX (rFIX) has no impact on the primary and higher order structure of activated factor IX. Characterisation work performed on recombinant factor IX and on the GlycoPEGylated form of rFIX (N9-GP), confirm that the primary structure as well as the post translational modifications (PTMs) (disulphide bonds, γ-carboxylation, β-hydroxylation, sulphation and O- and N-linked glycan structures) were comparable for rFIX and N9-GP. Three O-linked glycan sites were identified in the activation peptide (Thr159, Thr163 and Thr169), where Thr163 has not been reported previously. For N9-GP, the mono GlycoPEGylation is directed toward one of the two N-linked glycans present at Asn157 and Asn167 in the activation peptide in a one to one ratio. Spectroscopic techniques, such as far and near UV Circular Dichroism studies show comparable secondary and tertiary structures of rFIX and N9-GP. The thermally induced unfolding of rFIX and N9-GP shows that the unfolding temperature is approximately 1 °C higher for N9-GP than that of the rFIX. Furthermore, the pH dependent degradation was reduced due to the GlycoPEGylation of rFIX. GlycoPEGylated rFIX (N9-GP) is used for the manufacturing of Refixia® (nonacog beta pegol, Rebinyn®, Novo Nordisk A/S, Bagsvaerd, Denmark).
Collapse
|
6
|
Cho J, Park J, Kim S, Kim JC, Tae G, Jin MS, Kwon I. Intramolecular distance in the conjugate of urate oxidase and fatty acid governs FcRn binding and serum half-life in vivo. J Control Release 2020; 321:49-58. [DOI: 10.1016/j.jconrel.2020.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
|
7
|
Yainoy S, Phuadraksa T, Wichit S, Sompoppokakul M, Songtawee N, Prachayasittikul V, Isarankura-Na-Ayudhya C. Production and Characterization of Recombinant Wild Type Uricase from Indonesian Coelacanth ( L. menadoensis) and Improvement of Its Thermostability by In Silico Rational Design and Disulphide Bridges Engineering. Int J Mol Sci 2019; 20:ijms20061269. [PMID: 30871218 PMCID: PMC6471336 DOI: 10.3390/ijms20061269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
The ideal therapeutic uricase (UOX) is expected to have the following properties; high expression level, high activity, high thermostability, high solubility and low immunogenicity. The latter property is believed to depend largely on sequence identity to the deduced human UOX (dH-UOX). Herein, we explored L. menadoensis uricase (LM-UOX) and found that it has 65% sequence identity to dH-UOX, 68% to the therapeutic chimeric porcine-baboon UOX (PBC) and 70% to the resurrected ancient mammal UOX. To study its biochemical properties, recombinant LM-UOX was produced in E. coli and purified to more than 95% homogeneity. The enzyme had specific activity up to 10.45 unit/mg, which was about 2-fold higher than that of the PBC. One-litre culture yielded purified protein up to 132 mg. Based on homology modelling, we successfully engineered I27C/N289C mutant, which was proven to contain inter-subunit disulphide bridges. The mutant had similar specific activity and production yield to that of wild type (WT) but its thermostability was dramatically improved. Up on storage at −20 °C and 4 °C, the mutant retained ~100% activity for at least 60 days. By keeping at 37 °C, the mutant retained ~100% activity for 15 days, which was 120-fold longer than that of the wild type. Thus, the I27C/N289C mutant has potential to be developed for treatment of hyperuricemia.
Collapse
Affiliation(s)
- Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Thanawat Phuadraksa
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Maprang Sompoppokakul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | | |
Collapse
|
8
|
Santos JHPM, Torres-Obreque KM, Meneguetti GP, Amaro BP, Rangel-Yagui CO. Protein PEGylation for the design of biobetters: from reaction to purification processes. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Tao L, Li D, Li Y, Shi X, Wang J, Rao C, Zhang Y. Designing a mutant Candida uricase with improved polymerization state and enzymatic activity. Protein Eng Des Sel 2017; 30:753-759. [PMID: 29161434 DOI: 10.1093/protein/gzx056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
As human uricase has been silenced during evolution, counterparts from other species become an alternative for the treatment of hyperuricemia. Candida uricase is a promising option among them, but its aggregation propensity remains a major obstacle to clinical use. In this study, we designed two mutations according to homology-modeled 3D structure of Candida uricase: Cys249Ser substitution and C-terminal Leu deletion. The wild-type uricase and three mutants containing either or both of the mutations were expressed in Escherichia coli BL21 and validated by mass spectrometry. Size-exclusion chromatography and electrophoresis analysis demonstrated that aggregation was induced by interchain disulfide bonds and could be significantly avoided by Cys249Ser substitution. In combination with Cys249Ser substitution, deletion of Leu increased the enzymatic activity by 8%. Taken together, mutant containing both mutations is chosen as our target protein which is comparatively more suitable for therapeutic use. In addition, homology-modeled 3D structure was proved to be an efficient approach for protein engineering.
Collapse
Affiliation(s)
- Lei Tao
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an, People's Republic of China.,National Institute for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Dandan Li
- National Institute for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Yonghong Li
- National Institute for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Xinchang Shi
- National Institute for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Junzhi Wang
- National Institute for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Chunming Rao
- National Institute for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
10
|
Ronda L, Marchetti M, Piano R, Liuzzi A, Corsini R, Percudani R, Bettati S. A Trivalent Enzymatic System for Uricolytic Therapy of HPRT Deficiency and Lesch-Nyhan Disease. Pharm Res 2017; 34:1477-1490. [PMID: 28508122 PMCID: PMC5445154 DOI: 10.1007/s11095-017-2167-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Because of the evolutionary loss of the uricolytic pathway, humans accumulate poorly soluble urate as the final product of purine catabolism. Restoration of uricolysis through enzyme therapy is a promising treatment for severe hyperuricemia caused by deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). To this end, we studied the effect of PEG conjugation on the activity and stability of the enzymatic complement required for conversion of urate into the more soluble (S)-allantoin. METHODS We produced in recombinant form three zebrafish enzymes required in the uricolytic pathway. We carried out a systematic study of the effect of PEGylation on the function and stability of the three enzymes by varying PEG length, chemistry and degree of conjugation. We assayed in vitro the uricolytic activity of the PEGylated enzymatic triad. RESULTS We defined conditions that allow PEGylated enzymes to retain native-like enzymatic activity even after lyophilization or prolonged storage. A combination of the three enzymes in an appropriate ratio allowed efficient conversion of urate to (S)-allantoin with no accumulation of intermediate metabolites. CONCLUSIONS Pharmaceutical restoration of the uricolytic pathway is a viable approach for the treatment of severe hyperuricemia.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Medicine and Surgery,, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Marialaura Marchetti
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma,, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Riccardo Piano
- Department of Medicine and Surgery,, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Anastasia Liuzzi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma,, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Romina Corsini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma,, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma,, Parco Area delle Scienze 23/A, 43124, Parma, Italy.
| | - Stefano Bettati
- Department of Medicine and Surgery,, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy. .,National Institute of Biostructures and Biosystems, Viale Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
11
|
Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. J Pharm Sci 2016; 105:460-475. [PMID: 26869412 DOI: 10.1016/j.xphs.2015.11.015] [Citation(s) in RCA: 462] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/01/2015] [Accepted: 10/30/2015] [Indexed: 01/01/2023]
Abstract
Modification of biopharmaceutical molecules by covalent conjugation of polyethylene glycol (PEG) molecules is known to enhance pharmacologic and pharmaceutical properties of proteins and other large molecules and has been used successfully in 12 approved drugs. Both linear and branched-chain PEG reagents with molecular sizes of up to 40 kDa have been used with a variety of different PEG derivatives with different linker chemistries. This review describes the properties of PEG itself, the history and evolution of PEGylation chemistry, and provides examples of PEGylated drugs with an established medical history. A trend toward the use of complex PEG architectures and larger PEG polymers, but with very pure and well-characterized PEG reagents is described. Nonclinical toxicology findings related to PEG in approved PEGylated biopharmaceuticals are summarized. The effect attributed to the PEG part of the molecules as observed in 5 of the 12 marketed products was cellular vacuolation seen microscopically mainly in phagocytic cells which is likely related to their biological function to absorb and remove particles and macromolecules from blood and tissues. Experience with marketed PEGylated products indicates that adverse effects in toxicology studies are usually related to the active part of the drug but not to the PEG moiety.
Collapse
Affiliation(s)
| | - Mary J Bossard
- Nektar Therapeutics, Department of Polymer Chemistry, Huntsville, Alabama 35801-5914
| | | | - Inge A Ivens
- Bayer, Toxicology, San Francisco, California 94158
| |
Collapse
|
12
|
Wu J, Lu S, Zheng Z, Zhu L, Zhan X. Modification with polysialic acid–PEG copolymer as a new method for improving the therapeutic efficacy of proteins. Prep Biochem Biotechnol 2016; 46:788-797. [DOI: 10.1080/10826068.2015.1135463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shaozeng Lu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiyong Zheng
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Zhu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Akbarzadehlaleh P, Mirzaei M, Mashahdi-Keshtiban M, Shamsasenjan K, Heydari H. PEGylated Human Serum Albumin: Review of PEGylation, Purification and Characterization Methods. Adv Pharm Bull 2016; 6:309-317. [PMID: 27766215 DOI: 10.15171/apb.2016.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 11/09/2022] Open
Abstract
Human serum albumin (HSA) is a non-glycosylated, negatively charged protein (Mw: about 65-kDa) that has one free cystein residue (Cys 34), and 17 disulfide bridges that these bridges have main role in its stability and longer biological life-time (15 to 19 days). As HSA is a multifunctional protein, it can also bind to other molecules and ions in addition to its role in maintaining colloidal osmotic pressure (COP) in various diseases. In critical illnesses changes in the level of albumin between the intravascular and extravascular compartments and the decrease in its serum concentration need to be compensated using exogenous albumin; but as the size of HSA is an important parameter in retention within the circulation, therefore increasing its molecular size and hydrodynamic radius of HSA by covalent attachment of poly ethylene glycol (PEG), that is known as PEGylation, provides HSA as a superior volume expander that not only can prevent the interstitial edema but also can reduce the infusion frequency. This review focuses on various PEGylation methods of HSA (solid phase and liquid phase), and compares various methods to purifiy and characterize the pegylated form.
Collapse
Affiliation(s)
- Parvin Akbarzadehlaleh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Deapartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Mirzaei
- Deapartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdiyeh Mashahdi-Keshtiban
- Deapartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Deapartment of Immunology and Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Heydari
- Deapartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Wu J, Yang X, Wang D, Hu X, Liao J, Rao J, Pu J, Zhan CG, Liao F. A Numerical Approach for Kinetic Analysis of the Nonexponential Thermoinactivation Process of Uricase. Protein J 2016; 35:318-29. [PMID: 27480193 DOI: 10.1007/s10930-016-9675-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prior to the exponential decrease of activity of a uricase from Candida sp. during storage at 37 °C, there was a plateau period of about 4 days at pH 7.4, 12 days at pH 9.2, and about 22 days in the presence of 30 μM oxonate at pH 7.4 or 9.2, but no degradation of polypeptides and no activity of resolved homodimers. To reveal determinants of the plateau period, a dissociation model involving a serial of conformation intermediates of homotetramer were proposed for kinetic analysis of the thermoinactivation process. In the dissociation model, the roles of interior noncovalent interactions essential for homotetramer integrity were reflected by an equivalent number of the artificial weakest noncovalent interaction; to avoid covariance among parameters, the rate constant for disrupting the artificial weakest noncovalent interaction was fixed at the minimum for physical significance of other parameters; among thermoinactivation curves simulated by numerical integration with different sets of parameters, the one for least-squares fitting to an experimental one gave the solution. Results found that the equivalent number of the artificial weakest noncovalent interaction primarily determined the plateau period; kinetics rather than thermodynamics for homotetramer dissociation determined the thermoinactivation process. These findings facilitated designing thermostable uricase mutants.
Collapse
Affiliation(s)
- Jing Wu
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolan Yang
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Deqiang Wang
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolei Hu
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Liao
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, No.439, Xuanhua Road, Yongchuan, Chongqing, 402160, China
| | - JingJing Rao
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Pu
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Fei Liao
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Clinical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Mata-Gomez MA, Perez-Gonzalez VH, Gallo-Villanueva RC, Gonzalez-Valdez J, Rito-Palomares M, Martinez-Chapa SO. Modelling of electrokinetic phenomena for capture of PEGylated ribonuclease A in a microdevice with insulating structures. BIOMICROFLUIDICS 2016; 10:033106. [PMID: 27375815 PMCID: PMC4912556 DOI: 10.1063/1.4954197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 05/12/2023]
Abstract
Synthesis of PEGylated proteins results in a mixture of protein-polyethylene glycol (PEG) conjugates and the unreacted native protein. From a ribonuclease A (RNase A) PEGylation reaction, mono-PEGylated RNase A (mono-PEG RNase A) has proven therapeutic effects against cancer, reason for which there is an interest in isolating it from the rest of the reaction products. Experimental trapping of PEGylated RNase A inside an electrokinetically driven microfluidic device has been previously demonstrated. Now, from a theoretical point of view, we have studied the electrokinetic phenomena involved in the dielectrophoretic streaming of the native RNase A protein and the trapping of the mono-PEG RNase A inside a microfluidic channel. To accomplish this, we used two 3D computational models, a sphere and an ellipse, adapted to each protein. The effect of temperature on parameters related to trapping was also studied. A temperature increase showed to rise the electric and thermal conductivities of the suspending solution, hindering dielectrophoretic trapping. In contrast, the dynamic viscosity of the suspending solution decreased as the temperature rose, favoring the dielectrophoretic manipulation of the proteins. Also, our models were able to predict the magnitude and direction of the velocity of both proteins indicating trapping for the PEGylated conjugate or no trapping for the native protein. In addition, a parametric sweep study revealed the effect of the protein zeta potential on the electrokinetic response of the protein. We believe this work will serve as a tool to improve the design of electrokinetically driven microfluidic channels for the separation and recovery of PEGylated proteins in one single step.
Collapse
Affiliation(s)
- Marco A Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Roberto C Gallo-Villanueva
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Jose Gonzalez-Valdez
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Marco Rito-Palomares
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Sergio O Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey , Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| |
Collapse
|
16
|
Uricase alkaline enzymosomes with enhanced stabilities and anti-hyperuricemia effects induced by favorable microenvironmental changes. Sci Rep 2016; 7:20136. [PMID: 26823332 PMCID: PMC4731772 DOI: 10.1038/srep20136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023] Open
Abstract
Enzyme therapy is an effective strategy to treat diseases. Three strategies were pursued to provide the favorable microenvironments for uricase (UCU) to eventually improve its features: using the right type of buffer to constitute the liquid media where catalyze reactions take place; entrapping UCU inside the selectively permeable lipid vesicle membranes; and entrapping catalase together with UCU inside the membranes. The nanosized alkaline enzymosomes containing UCU/(UCU and catalase) (ESU/ESUC) in bicine buffer had better thermal, hypothermal, acid-base and proteolytic stabilities, in vitro and in vivo kinetic characteristics, and uric acid lowering effects. The favorable microenvironments were conducive to the establishment of the enzymosomes with superior properties. It was the first time that two therapeutic enzymes were simultaneously entrapped into one enzymosome having the right type of buffer to achieve added treatment efficacy. The development of ESU/ESUC in bicine buffer provides valuable tactics in hypouricemic therapy and enzymosomal application.
Collapse
|
17
|
Mata-Gómez MA, Gallo-Villanueva RC, González-Valdez J, Martínez-Chapa SO, Rito-Palomares M. Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond-shaped insulating posts. Electrophoresis 2015; 37:519-28. [PMID: 26530024 DOI: 10.1002/elps.201500311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/06/2022]
Abstract
Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono-PEGylated (mono-PEG) and di-PEGylated (di-PEG) RNase A conjugates, and the unreacted protein. Mono-PEG RNase A is of great interest. The use of electrokinetic forces in microdevices represents a novel alternative to chromatographic methods to separate this specie. This work describes the dielectrophoretic behavior of the main protein products of the RNase A PEGylation inside a microchannel with insulators under direct current electric fields. This approach represents the first step in route to design micro-bioprocesses to separate PEGylated RNase A from unreacted native protein. The three proteins exhibited different dielectrophoretic behaviors. All of them experienced a marked streaming pattern at 3000 V consistent with positive dielectrophoresis. Native protein was not captured at any of the conditions tested, while mono-PEG RNase A and di-PEG RNase A were captured presumably due to positive dielectrophoresis at 4000 and 2500 V, respectively. Concentration of mono-PEG RNase A with a maximal enrichment efficiency of ≈9.6 times the feed concentration was achieved in few seconds. These findings open the possibility of designing novel devices for rapid separation, concentration, and recovery of PEGylated RNase A in a one-step operation.
Collapse
Affiliation(s)
- Marco A Mata-Gómez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | | | | | | | | |
Collapse
|
18
|
Hadadian S, Shamassebi DN, Mirzahoseini H, Shokrgozar MA, Bouzari S, Sepahi M. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor. Adv Biomed Res 2015; 4:176. [PMID: 26605215 PMCID: PMC4616999 DOI: 10.4103/2277-9175.164001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/11/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. MATERIALS AND METHODS In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD polyethylene glycol. The PEGylated form was separated by size exclusion chromatography. Structural, biological activity, and stability evaluations were performed using Fourier transform infrared (FITR) spectroscopy, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and effect denaturing agent, respectively. RESULTS FITR spectroscopy revealed that both PEGylated and native forms had the same structures. MTT assay showed that PEGyalated form had a 30% reduced biological activity. Fluorescence spectrophotometry indicated that the PEGylated form denatured at higher concentrations of guanidine HCl (1.2 M) compared with native, which denatured at 0.8 M guanidine HCl. CONCLUSIONS PEGylation of hBFGF makes it more stable against denaturing agent but reduces its bioactivity up to 30%.
Collapse
Affiliation(s)
- Shahin Hadadian
- Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | | | - Hasan Mirzahoseini
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Sepahi
- Department of Recombinant Biopharmaceutical Production, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| |
Collapse
|
19
|
Lim SI, Hahn YS, Kwon I. Site-specific albumination of a therapeutic protein with multi-subunit to prolong activity in vivo. J Control Release 2015; 207:93-100. [PMID: 25862515 PMCID: PMC4430413 DOI: 10.1016/j.jconrel.2015.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/03/2015] [Accepted: 04/05/2015] [Indexed: 11/21/2022]
Abstract
Albumin fusion/conjugation (albumination) has been an effective method to prolong in vivo half-life of therapeutic proteins. However, its broader application to proteins with complex folding pathway or multi-subunit is restricted by incorrect folding, poor expression, heterogeneity, and loss of native activity of the proteins linked to albumin. We hypothesized that the site-specific conjugation of albumin to a permissive site of a target protein will expand the utilities of albumin as a therapeutic activity extender to proteins with a complex structure. We show here the genetic incorporation of a non-natural amino acid (NNAA) followed by chemoselective albumin conjugation to prolong therapeutic activity in vivo. Urate oxidase (Uox), a therapeutic enzyme for treatment of hyperuricemia, is a homotetramer with multiple surface lysines, limiting conventional approaches for albumination. Incorporation of p-azido-l-phenylalanine into two predetermined positions of Uox allowed site-specific linkage of dibenzocyclooctyne-derivatized human serum albumin (HSA) through strain-promoted azide-alkyne cycloaddition (SPAAC). The bio-orthogonality of SPAAC resulted in the production of a chemically well-defined conjugate, Uox-HSA, with a retained enzymatic activity. Uox-HSA had a half-life of 8.8 h in mice, while wild-type Uox had a half-life of 1.3 h. The AUC increased 5.5-fold (1657 vs. 303 mU/mL x h). These results clearly demonstrated that site-specific albumination led to the prolonged enzymatic activity of Uox in vivo. Site-specific albumination enabled by NNAA incorporation and orthogonal chemistry demonstrates its promise for the development of long-acting protein therapeutics with high potency and safety.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, VA 22904, United States
| | - Young S Hahn
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA 22908, United States
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, VA 22904, United States; School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea.
| |
Collapse
|
20
|
Paramjot, Khan NM, Kapahi H, Kumar S, Bhardwaj TR, Arora S, Mishra N. Role of polymer–drug conjugates in organ-specific delivery systems. J Drug Target 2015; 23:387-416. [DOI: 10.3109/1061186x.2015.1016436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Abstract
Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration.
Collapse
|
22
|
Chaudhari PN, Chincholkar SB, Chaudhari BL. Biodegradation of feather keratin with a PEGylated protease of Chryseobacterium gleum. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|