1
|
Tavares MEA, Pinto AP, da Rocha AL, Sampaio LV, Correia RR, Batista VRG, Veras ASC, Chaves-Neto AH, da Silva ASR, Teixeira GR. Combined physical exercise re-synchronizes expression of Bmal1 and REV-ERBα and up-regulates apoptosis and metabolism in the prostate during aging. Life Sci 2024; 351:122800. [PMID: 38880169 DOI: 10.1016/j.lfs.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Aging increases the prevalence of prostate cancer. The circadian clock coordinates metabolism, cell cycle, and tumor suppressor p53. Although physical exercise has several effects on preventing prostate diseases, its effect on regulating genes and proteins of the circadian rhythm of the prostate needs to be better evaluated. The present study verified expression of REV-ERBα (Nr1d1), Bmal1, apoptosis, tumor suppressors, energetic metabolism markers, and androgen receptors in the prostatic microenvironment in 18-month-old mice submitted to combined physical training. METHODS C57BL/6 J mice were divided into 2 groups: 6 months-old (n = 10) and 18 months-old, (n = 20). The 18-month-old animals were divided into 2 subgroups: sedentary (n = 10, 18 m Sed) and submitted to combined physical training (n = 10, 18 m TR). Combined physical training protocol was performed by running on the treadmill (40-60 % of incremental load test) and climbing strength training (40-50 % of maximum repetition test), consisting of 5×/week (3 days aerobic and 2 days strength) for 3 weeks. The prostate was prepared for Western blot and RT-qPCR analysis, and the plasm was prepared for the biochemistry analysis. RESULTS Combined physical exercise during aging led to increased levels of Bmal1 and decreased levels of REV-ERBα in the prostate. These results were accompanied by a reduction in the AMPK/SIRT1/PGC-1α proteins and an increase in the PI3K/AKT and p53/PTEN/caspase 3 pathways, promoting apoptotic potential. CONCLUSION These findings suggest that strength and aerobic physical exercise may be preventive in the development of preneoplastic molecular alterations and age-related features by re-synchronizes Bmal1 and REV-ERBα in prostatic tissues.
Collapse
Affiliation(s)
- Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Alisson Luiz da Rocha
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Larissa Victorino Sampaio
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Victor Rogério Garcia Batista
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Antonio Hernandes Chaves-Neto
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| |
Collapse
|
2
|
Xia H, Zhan Y, Wang L, Wang X. Exploring the interplay between circadian rhythms and prostate cancer: insights into androgen receptor signaling and therapeutic opportunities. Front Cell Dev Biol 2024; 12:1421204. [PMID: 39011396 PMCID: PMC11246886 DOI: 10.3389/fcell.2024.1421204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Circadian rhythm disruption is closely related to increased incidence of prostate cancer. Incorporating circadian rhythms into the study of prostate cancer pathogenesis can provide a more comprehensive understanding of the causes of cancer and offer new options for precise treatment. Therefore, this article comprehensively summarizes the epidemiology of prostate cancer, expounds the contradictory relationship between circadian rhythm disorders and prostate cancer risk, and elucidates the relationship between circadian rhythm regulators and the incidence of prostate cancer. Importantly, this article also focuses on the correlation between circadian rhythms and androgen receptor signaling pathways, as well as the applicability of time therapy in prostate cancer. This may prove significant in enhancing the clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Hongyan Xia
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yang Zhan
- National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, China
| | - Li Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
4
|
Li Y, Zhang H, Wang Y, Li D, Chen H. Advances in circadian clock regulation of reproduction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:83-133. [PMID: 37709382 DOI: 10.1016/bs.apcsb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The mammalian circadian clock is an endogenously regulated oscillator that is synchronized with solar time and cycle within a 24-h period. The circadian clock exists not only in the suprachiasmatic nucleus (SCN) of the hypothalamus, a central pacemaker of the circadian clock system, but also in numerous peripheral tissues known as peripheral circadian oscillators. The SCN and peripheral circadian oscillators mutually orchestrate the diurnal rhythms of various physiological and behavioral processes in a hierarchical manner. In the past two decades, peripheral circadian oscillators have been identified and their function has been determined in the mammalian reproductive system and its related endocrine glands, including the hypothalamus, pituitary gland, ovaries, testes, uterus, mammary glands, and prostate gland. Increasing evidence indicates that both the SCN and peripheral circadian oscillators play discrete roles in coordinating reproductive processes and optimizing fertility in mammals. The present study reviews recent evidence on circadian clock regulation of reproductive function in the hypothalamic-pituitary-gonadal axis and reproductive system. Additionally, we elucidate the effects of chronodisruption (as a result of, for example, shift work, jet lag, disrupted eating patterns, and sleep disorders) on mammalian reproductive performance from multiple aspects. Finally, we propose potential behavioral changes or pharmaceutical strategies for the prevention and treatment of reproductive disorders from the perspective of chronomedicine. Conclusively, this review will outline recent evidence on circadian clock regulation of reproduction, providing novel perspectives on the role of the circadian clock in maintaining normal reproductive functions and in diseases that negatively affect fertility.
Collapse
Affiliation(s)
- Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
5
|
Noh SG, Jung HJ, Kim S, Arulkumar R, Kim DH, Park D, Chung HY. Regulation of Circadian Genes Nr1d1 and Nr1d2 in Sex-Different Manners during Liver Aging. Int J Mol Sci 2022; 23:ijms231710032. [PMID: 36077427 PMCID: PMC9456386 DOI: 10.3390/ijms231710032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Circadian rhythm is associated with the aging process and sex differences; however, how age and sex can change circadian regulation systems remains unclear. Thus, we aimed to evaluate age- and sex-related changes in gene expression and identify sex-specific target molecules that can regulate aging. Methods: Rat livers were categorized into four groups, namely, young male, old male, young female, and old female, and the expression of several genes involved in the regulation of the circadian rhythm was confirmed by in silico and in vitro studies. Results: Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the expression of genes related to circadian rhythms changed more in males than in females during liver aging. In addition, differentially expressed gene analysis and quantitative real-time polymerase chain reaction/western blotting analysis revealed that Nr1d1 and Nr1d2 expression was upregulated in males during liver aging. Furthermore, the expression of other circadian genes, such as Arntl, Clock, Cry1/2, Per1/2, and Rora/c, decreased in males during liver aging; however, these genes showed various gene expression patterns in females during liver aging. Conclusions: Age-related elevation of Nr1d1/2 downregulates the expression of other circadian genes in males, but not females, during liver aging. Consequently, age-related upregulation of Nr1d1/2 may play a more crucial role in the change in circadian rhythms in males than in females during liver aging.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Seungwoo Kim
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2814
| |
Collapse
|
6
|
Modelling Female Physiology from Head to Toe: Impact of Sex Hormones, Menstrual Cycle, and Pregnancy. J Theor Biol 2022; 540:111074. [DOI: 10.1016/j.jtbi.2022.111074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
|
7
|
Xiong Y, Zhang F, Wu C, Zhang Y, Huang X, Qin F, Yuan J. The Circadian Syndrome Predicts Lower Urinary Tract Symptoms Suggestive of Benign Prostatic Hyperplasia Better Than Metabolic Syndrome in Aging Males: A 4-Year Follow-Up Study. Front Med (Lausanne) 2021; 8:715830. [PMID: 34621761 PMCID: PMC8490706 DOI: 10.3389/fmed.2021.715830] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The prevalence of lower urinary tract symptoms (LUTS) suggestive of benign prostate hyperplasia (BPH) increases in men. Although several risk factors, including metabolic syndrome (MetS) and depression, were identified, the underlying etiological factor remains unclear. Recently, circadian syndrome (CircS) was proposed as a novel risk cluster based on MetS. To compare the predictive power of the CircS and MetS for LUTS/BPH, this study was performed. Materials and Methods: In the baseline survey, 4,390 men older than 40 years from the China Health and Retirement Longitudinal Study were enrolled. Of them, 3,658 men were followed in the 2015 survey. Logistic regression was adopted to examine the relationships between CircS, MetS, and LUTS/BPH. To further verify the association, propensity score matching was used for sensitivity analyses. Moreover, the participants who had LUTS/BPH at the baseline were excluded to test the longitudinal relationships between CircS, MetS, and LUTS/BPH. In addition, we employed the receiver operating characteristic (ROC) curve analysis to compare the predictive power using the number of components of CircS and MetS. The DeLong test was used to test the disparities of area under the curves (AUCs). Results: The prevalence of CircS and MetS in aging men was 30.23 and 38.36%, respectively. The odds ratios for prevalent LUTS/BPH were 1.61 (95% CI = 1.29–2.00, P < 0.001) and 1.34 (95% CI = 1.08–1.66, P < 0.01), respectively, in aging men. This increased risk was also observed in incident LUTS/BPH. The prevalence of LUTS/BPH in normal, CircS alone, MetS alone, and both CircS and MetS groups was 6.96, 8.77, 7.83, and 10.77%, respectively. The AUCs for CircS predicting prevalent and incident LUTS/BPH were higher than those for MetS (0.582 vs. 0.556 for incident LUTS/BPH, P < 0.001; 0.574 vs. 0.561 for prevalent LUTS/BPH, P < 0.05). Conclusions: The CircS predicts both incident and prevalent LUTS/BPH better than MetS.
Collapse
Affiliation(s)
- Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yangchang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xiaoyingzi Huang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhao L, Yang L, Zhang J, Xiao Y, Wu M, Ma T, Wang X, Zhang L, Jiang H, Chao HW, Wang A, Jin Y, Chen H. Bmal1 promotes prostaglandin E 2 synthesis by upregulating Ptgs2 transcription in response to increasing estradiol levels in day 4 pregnant mice. Am J Physiol Endocrinol Metab 2021; 320:E747-E759. [PMID: 33554778 DOI: 10.1152/ajpendo.00466.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/31/2021] [Indexed: 12/28/2022]
Abstract
Prostaglandin G/H synthase 2 (PTGS2) is a rate-limiting enzyme in prostaglandin synthesis. The present study assessed the role of the uterine circadian clock on Ptgs2 transcription in response to steroid hormones during early pregnancy. We demonstrated that the core clock genes (Bmal1, Per2, Nr1d1, and Dbp), Vegf, and Ptgs2, and their encoded proteins, have rhythmic expression in the mouse uterus from days 3.5 to 4.5 (D3.5-4.5) of pregnancy. Progesterone (P4) treatment of cultured uterus endometrial stromal cells (UESCs) isolated from mPer2Luciferase reporter gene knock-in mice on D4 induced a phase shift in PER2::LUCIFERASE oscillations. This P4-induced phase shift of PER2::LUCIFERASE oscillations was significantly attenuated by the P4 antagonist RU486. Additionally, the amplitude of PER2::LUCIFERASE oscillations was increased by estradiol (E2) treatment in the presence of P4. Consistently, the mRNA levels of clock genes (Bmal1 and Per2), Vegf, and Ptgs2 were markedly increased by E2 treatment of UESCs in the presence of P4. Treatment with E2 also promoted prostaglandin E2 (PGE2) synthesis by UESCs. Depletion of Bmal1 in UESCs by small-interfering RNA (siRNA) decreased the transcript levels of clock genes (Nr1d1 and Dbp), Vegf, and Ptgs2 compared with nonsilencing siRNA treatment. Bmal1 knockdown also inhibited PGE2 synthesis. Moreover, the mRNA expression levels of clock genes (Nr1d1 and Dbp), Vegf, and Ptgs2, and their respective proteins were significantly decreased in the uterus of Bmal1-/- mice. Thus, these data suggest that Bmal1 in mice promotes PGE2 synthesis by upregulating Ptgs2 in response to increases in E2 on D4 of pregnancy.NEW & NOTEWORTHY Rhythmic expression of Bmal1 and Ptgs2 was observed in the uterus isolated from D3.5-4.5 of pregnant mice. E2 increased the expression of Bmal1 and Ptg2 in UESCs isolated from mice on D4. The expression of Ptgs2 was significantly decreased in Bmal1-siRNA treated UESCs. Bmal1 knockdown also inhibited PGE2 synthesis. Thus, these data suggest that Bmal1 in mice promotes PGE2 synthesis by upregulating Ptgs2 in response to increases in E2 on D4 of pregnancy.
Collapse
Affiliation(s)
- Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Meina Wu
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Linlin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Rhythm and blues: Influence of CLOCK T3111C on peripheral electrophysiological indicators of negative affective processing. Physiol Behav 2020; 219:112831. [DOI: 10.1016/j.physbeh.2020.112831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
|
10
|
Hashimoto A, Fujiki S, Nakamura W, Nakamura TJ. Effects of testosterone on circadian rhythmicity in old mice. J Physiol Sci 2019; 69:791-798. [PMID: 31301005 PMCID: PMC10717400 DOI: 10.1007/s12576-019-00695-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/06/2019] [Indexed: 11/26/2022]
Abstract
Serum testosterone concentration decreases with age in humans and rodents. Accordingly, old male mice show changes in locomotor activity rhythms: a lengthened free-running period and decreased activity levels among others. To investigate whether testosterone replacement improves the age-related decline in circadian rhythmicity, we examined the effects of testosterone on the circadian rhythms of wheel running activity in old male mice. Intact male C57BL/6J mice (18-22 months old) were subcutaneously implanted with silicone tubes packed with testosterone propionate (TP) or cholesterol. TP treatment significantly decreased the daily wheel running revolutions in a normal light/dark (LD) cycle and in constant darkness (DD), but did not affect the free-running period. The same experiment performed on young male gonadectomized mice (3-5 months old) demonstrated that TP treatment significantly increased activity levels in both LD and DD. These results suggest that testosterone replacement exacerbates the age-related decline in circadian rhythmicity.
Collapse
Affiliation(s)
- Atsuyoshi Hashimoto
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shingo Fujiki
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Wataru Nakamura
- Department of Oral-Chrono Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
11
|
Hasakova K, Vician M, Reis R, Zeman M, Herichova I. Sex-dependent correlation between survival and expression of genes related to the circadian oscillator in patients with colorectal cancer. Chronobiol Int 2018; 35:1423-1434. [PMID: 29953268 DOI: 10.1080/07420528.2018.1488722] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence supports the important role of the circadian system in cancer progression in humans. The aim of the present study is to evaluate clock (cry1, cry2 and per2) and clock-controlled (vascular endothelial growth factor-a, early growth response protein 1 and estrogen receptor β) gene expression in colorectal cancer and adjacent tissue and identify a possible link between survival of patients and expression of above mentioned genes. The study includes 64 patients of both sexes with previously diagnosed colorectal cancer. RNA was extracted from the tumor tissue and adjacent parts of the resected colon, and real-time PCR was used for detection of clock gene expression. Expression of cry2 and per2 was significantly downregulated in tumor tissue compared to adjacent tissues. After splitting of the cohort according to sex, we detected downregulated levels of cry2 and per2 in male patients, but not in females. Splitting of male and female sub-cohorts according to presence of metastases revealed significant donwregulation of cry2 expression in female patients without distant metastasis. Better survival rate was associated with low expression of cry2 in female patients. Moreover, we observed an increase in cry1 expression in female patients with distant metastases in tumor compared to adjacent tissue. Accordingly, women with high expression of cry1 in tumor tissue displayed worse survival, which was not observed in men. Taken together, expression of clock and clock-controlled genes in tumors of males and females clustered according to presence of distant metastases correlated with survival analysis. Studied clock-controlled genes also showed sex-dependent changes. Low expression of vegf-a in tumor correlated with better survival in men but not in women. High expression of estrogen receptor β mRNA was related to better survival in women but not in men. Low expression of vegf-a, egr1 and estrogen receptor β was associated with worse survival in women compared to men. Our data indicate sex-dependent associations between clock and clock-controlled gene expression in cancer tissue and patient's survival prognosis.
Collapse
Affiliation(s)
- Kristina Hasakova
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Marian Vician
- b Fourth Surgery Department , University Hospital, Comenius University Bratislava , Bratislava , Slovak Republic
| | - Richard Reis
- c First Surgery Department , University Hospital, Comenius University Bratislava , Bratislava , Slovak Republic
| | - Michal Zeman
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Iveta Herichova
- a Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University Bratislava , Bratislava , Slovak Republic
| |
Collapse
|
12
|
Guo Y, Shen O, Han J, Duan H, Yang S, Zhu Z, Tong J, Zhang J. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1314-1320. [PMID: 29040059 DOI: 10.1080/15287394.2017.1384148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Animals
- Cell Line
- Circadian Rhythm/genetics
- Circadian Rhythm Signaling Peptides and Proteins/genetics
- Circadian Rhythm Signaling Peptides and Proteins/metabolism
- Insecticides/toxicity
- Leydig Cells/drug effects
- Leydig Cells/metabolism
- Male
- Mice
- Nitriles/toxicity
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Pyrethrins/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Testosterone/metabolism
Collapse
Affiliation(s)
- Yichen Guo
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Ouxi Shen
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
- b Department of Occupational Health , Suzhou Industrial Park Center for Disease Control and Prevention , Suzhou , China
| | - Jingjing Han
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Hongyu Duan
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Siyuan Yang
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Zhenghong Zhu
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Jian Tong
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| | - Jie Zhang
- a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health , Medical College of Soochow University , Suzhou China
| |
Collapse
|
13
|
Kiss Z, Ghosh PM. WOMEN IN CANCER THEMATIC REVIEW: Circadian rhythmicity and the influence of 'clock' genes on prostate cancer. Endocr Relat Cancer 2016; 23:T123-T134. [PMID: 27660402 PMCID: PMC5148656 DOI: 10.1530/erc-16-0366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
Abstract
The androgen receptor (AR) plays a key role in the development and progression of prostate cancer (CaP). Since the mid-1990s, reports in the literature pointed out higher incidences of CaP in some select groups, such as airline pilots and night shift workers in comparison with those working regular hours. The common finding in these 'high-risk' groups was that they all experienced a deregulation of the body's internal circadian rhythm. Here, we discuss how the circadian rhythm affects androgen levels and modulates CaP development and progression. Circadian rhythmicity of androgen production is lost in CaP patients, with the clock genes Per1 and Per2 decreasing, and Bmal1 increasing, in these individuals. Periodic expression of the clock genes was restored upon administration of the neurohormone melatonin, thereby suppressing CaP progression. Activation of the melatonin receptors and the AR antagonized each other, and therefore the tumour-suppressive effects of melatonin and the clock genes were most clearly observed in the absence of androgens, that is, in conjunction with androgen deprivation therapy (ADT). In addition, a large-scale study found that high-dose radiation was more effective in CaP patients when it was delivered before 17:00 h, compared with those delivered after 17:00 h, suggesting that the therapy was more effective when delivered in synchrony with the patient's circadian clock. As CaP patients are shown to become easily resistant to new therapies, perhaps circadian delivery of these therapeutic agents or delivery in conjunction with melatonin and its novel analogs should be tested to see if they prevent this resistance.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care SystemMather, California, USA
- Department of UrologyUniversity of California at Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- VA Northern California Health Care SystemMather, California, USA
- Department of UrologyUniversity of California at Davis, Sacramento, California, USA
- Department of Biochemistry and Molecular MedicineUniversity of California at Davis, Sacramento, California, USA
| |
Collapse
|
14
|
Mereness AL, Murphy ZC, Sellix MT. Developmental programming by androgen affects the circadian timing system in female mice. Biol Reprod 2015; 92:88. [PMID: 25695720 DOI: 10.1095/biolreprod.114.126409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 12/16/2022] Open
Abstract
Circadian clocks play essential roles in the timing of events in the mammalian hypothalamo-pituitary-ovarian (HPO) axis. The molecular oscillator driving these rhythms has been localized to tissues of the HPO axis. It has been suggested that synchrony among these oscillators is a feature of normal reproductive function. The impact of fertility disorders on clock function and the role of the clock in the etiology of endocrine pathology remain unknown. Polycystic ovarian syndrome (PCOS) is a particularly devastating fertility disorder, affecting 5%-10% of women at childbearing age with features including a polycystic ovary, anovulation, and elevated serum androgen. Approximately 40% of these women have metabolic syndrome, marked by hyperinsulinemia, dyslipidemia, and insulin resistance. It has been suggested that developmental exposure to excess androgen contributes to the etiology of fertility disorders, including PCOS. To better define the role of the timing system in these disorders, we determined the effects of androgen-dependent developmental programming on clock gene expression in tissues of the metabolic and HPO axes. Female PERIOD2::luciferase (PER2::LUC) mice were exposed to androgen (dihydrotestosterone [DHT]) in utero (Days 16-18 of gestation) or for 9-10 wk (DHT pellet) beginning at weaning (pubertal androgen excess [PAE]). As expected, both groups of androgen-treated mice had disrupted estrous cycles. Analysis of PER2::LUC expression in tissue explants revealed that excess androgen produced circadian misalignment via tissue-dependent effects on phase distribution. In vitro treatment with DHT differentially affected the period of PER2::LUC expression in tissue explants and granulosa cells, indicating that androgen has direct and tissue-specific effects on clock gene expression that may account for the effects of developmental programming on the timing system.
Collapse
Affiliation(s)
- Amanda L Mereness
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Zachary C Murphy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|