1
|
Lockhart KN, Fallon LC, Ortega MS. Paternal determinants of early embryo development. Reprod Fertil Dev 2023; 36:43-50. [PMID: 38064190 DOI: 10.1071/rd23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Existing research has primarily focused on investigating the impacts of the maternal environment, female fertility phenotype, and genetics on pregnancy loss in dairy cattle. Recently, attention has been directed toward understanding the role the sire has on embryo quality and viability. Studies have shown there is a paternal influence on early pregnancy loss, but the specific mechanisms impacting pregnancy establishment and maintenance remain unclear. Despite clear differences that sires have on pregnancy outcomes, there is a lack of evidence regarding specifically how sires influence pregnancy. Sperm characteristics, such as motility, concentration, and morphology, have been extensively studied, but further research is needed to understand what makes one sire more or less fertile than another sire and how this affects pregnancy. To effectively address pregnancy loss, a deeper understanding of the processes involved from fertilisation to blastocyst formation is essential, particularly for understanding early pregnancy loss.
Collapse
Affiliation(s)
- Kelsey N Lockhart
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lindsey C Fallon
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
McMillan RB, Bediako H, Devenica LM, Velasquez A, Hardy IP, Ma YE, Roscoe DM, Carter AR. Protamine folds DNA into flowers and loop stacks. Biophys J 2023; 122:4288-4302. [PMID: 37803830 PMCID: PMC10645571 DOI: 10.1016/j.bpj.2023.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
DNA in sperm undergoes an extreme compaction to almost crystalline packing levels. To produce this dense packing, DNA is dramatically reorganized in minutes by protamine proteins. Protamines are positively charged proteins that coat negatively charged DNA and fold it into a series of toroids. The exact mechanism for forming these ∼50-kbp toroids is unknown. Our goal is to study toroid formation by starting at the "bottom" with folding of short lengths of DNA that form loops and working "up" to more folded structures that occur on longer length scales. We previously measured folding of 200-300 bp of DNA into a loop. Here, we look at folding of intermediate DNA lengths (L = 639-3003 bp) that are 2-10 loops long. We observe two folded structures besides loops that we hypothesize are early intermediates in the toroid formation pathway. At low protamine concentrations (∼0.2 μM), we see that the DNA folds into flowers (structures with multiple loops that are positioned so they look like the petals of a flower). Folding at these concentrations condenses the DNA to 25% of its original length, takes seconds, and is made up of many small bending steps. At higher protamine concentrations (≥2 μM), we observe a second folded structure-the loop stack-where loops are stacked vertically one on top of another. These results lead us to propose a two-step process for folding at this length scale: 1) protamine binds to DNA, bending it into loops and flowers, and 2) flowers collapse into loop stacks. These results highlight how protamine uses a bind-and-bend mechanism to rapidly fold DNA, which may be why protamine can fold the entire sperm genome in minutes.
Collapse
Affiliation(s)
- Ryan B McMillan
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, Massachusetts
| | | | - Isabel P Hardy
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Yuxing E Ma
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Donna M Roscoe
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, Massachusetts.
| |
Collapse
|
3
|
Agudo-Rios C, Sanchez-Rodriguez A, Idrovo IID, Laborda-Gomariz JÁ, Soler AJ, Teves ME, Roldan ERS. Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. Int J Mol Sci 2023; 24:15954. [PMID: 37958937 PMCID: PMC10648696 DOI: 10.3390/ijms242115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Sperm DNA integrity and chromatin status serve as pivotal indicators of sperm quality, given their intricate link to sperm function, embryo development, and overall fertility. Defects in chromatin compaction, which are often associated with compromised protamine content, can lead to damaged DNA strands. In this study, the chromatin status and possible correlation with DNA damage was assessed in males of three mouse species: Mus musculus, M. spretus, and M. spicilegus. We employed various staining methods, including aniline blue, methylene blue (Diff-Quik), toluidine blue, and chromomycin A3, to assess chromatin compaction in cauda epididymal sperm. Samples were also analyzed by the sperm chromatin structure assay (SCSA) to estimate DNA fragmentation (%tDFI, %HDS). Analyses were carried out on freshly collected sperm and cells incubated for 3 h in a HEPES-buffered modified Tyrode's medium simulating conditions of the female reproductive tract. Notably, the analysis of chromatin status yielded minimal abnormal values across all three species employing diverse methodologies. SCSA analyses revealed distinct variations in %tDFI between species. Following sperm incubation, the percentages of sperm stained with methylene blue exhibited differences among the species and were significantly correlated to the DNA fragmentation index. HDS demonstrated correlations with the percentages of sperm stained by aniline blue, methylene blue, and chromomycin A3. Overall, chromatin compaction was high across all species, with limited differences among them. The relationship between chromatin status and DNA integrity appeared to be related to levels of sperm competition among species.
Collapse
Affiliation(s)
- Clara Agudo-Rios
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ingrid I. D. Idrovo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | | | - Ana J. Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, 02071 Albacete, Spain
| | - Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| |
Collapse
|
4
|
Abah KO, Fontbonne A, Partyka A, Nizanski W. Effect of male age on semen quality in domestic animals: potential for advanced functional and translational research? Vet Res Commun 2023; 47:1125-1137. [PMID: 37433886 PMCID: PMC10485126 DOI: 10.1007/s11259-023-10159-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Age and other factors like season and breed are often associated with sperm quality and fertility in domestic animals. Even though many studies assessed the relationship between the age of the male and sperm parameters, the effects have not been comprehensively evaluated. Changes in semen quality from pubertal (young) to adult and old age were identified in the bull, ram, buck, boar, dog, and stallion, respectively. The review discusses the association between male age and semen volume, the total number of spermatozoa per ejaculate, sperm concentration, motility, morphology, sperm cell function, sperm DNA integrity, oxidative stress, and antioxidant activity in these species of animals. Generally, semen characteristics improve to a certain age, which declines as the animal ages. Only a few studies evaluated the impact of advanced age or employed advanced functional sperm assessment methods to assess age-related changes in sperm quality and male fertility. Such studies in the dog or stallion, for instance, may contribute to advancing knowledge in human-assisted reproductive techniques used in patients of advanced paternal and maternal age.
Collapse
Affiliation(s)
- Kenneth Owoicho Abah
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Alain Fontbonne
- École Nationale Vétérinaire d’Alfort, 94704 Maisons-Alfort, Paris France
| | - Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Wojciech Nizanski
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
5
|
Akbari H, Elyasi L, Khaleghi AA, Mohammadi M. The effect of zinc supplementation on improving sperm parameters in infertile diabetic men. J Obstet Gynaecol India 2023; 73:316-321. [PMID: 37701089 PMCID: PMC10492728 DOI: 10.1007/s13224-023-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/30/2023] [Indexed: 09/14/2023] Open
Abstract
Background and aims Diabetes mellitus (DM) may have different adverse effects on the male reproductive system. Zinc (Zn) is one of the necessary elements in the human and mammalian diet that plays an important role in scavenging reactive oxygen species (ROS) by providing antioxidant and anti-apoptotic properties. The aim of this study was to determine the protective effects of zinc supplements on sperm chromatin and the evaluation of sperm deoxyribonucleic acid (DNA) integrity in diabetic men. Methods In this interventional study, 43 infertile Iranian men in diabetic and non-diabetic groups were included. They were then randomly divided into two subgroups: normal saline intake and zinc sulfate intake (25 mg orally for 64 days each). Different indices of sperm analysis (number, morphology and motility) and testosterone levels were evaluated in four groups. Protamine deficiency and DNA fragmentation were assessed using chromomycin A3 (CMA3) and sperm chromatin dispersion (SCD) methods, respectively. Results Zinc supplementation reduced the deformity of neck and head of sperms (p < 0.05), as well as deformity of sperm tail in infertile diabetic men. Zinc administration ameliorated sperm motility types A, B and C (p < 0.05). Moreover, zinc administration reduced abnormal morphology and DNA fragmentation of sperms, which increased the SCD1 and SCD2 and reduced the SCD3 and SCD4 in both treated groups. Conclusion Zinc supplementation, as a powerful complement, is able to balance the effect of diabetes on sperm parameters, sperm chromatin and DNA integrity. Consequently, zinc supplementation can probably be considered a supportive compound in the diet of diabetic infertile men.
Collapse
Affiliation(s)
- Hakimeh Akbari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Leila Elyasi
- Department of Anatomy, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Asghar Khaleghi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
6
|
Thiangthientham P, Kallayanathum W, Anakkul N, Suwimonteerabutr J, Santiviparat S, Techakumphu M, Loi P, Tharasanit T. Effects of freeze-drying on the quality and fertilising ability of goat sperm recovered from different parts of the epididymis. Theriogenology 2023; 195:31-39. [DOI: 10.1016/j.theriogenology.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
7
|
Indriastuti R, Pardede BP, Gunawan A, Ulum MF, Arifiantini RI, Purwantara B. Sperm Transcriptome Analysis Accurately Reveals Male Fertility Potential in Livestock. Animals (Basel) 2022; 12:2955. [PMID: 36359078 PMCID: PMC9657999 DOI: 10.3390/ani12212955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Nowadays, selection of superior male candidates in livestock as a source of frozen semen based on sperm quality at the cellular level is not considered accurate enough for predicting the potential of male fertility. Sperm transcriptome analysis approaches, such as messenger RNA levels, have been shown to correlate with fertility rates. Using this technology in livestock growth has become the principal method, which can be widely applied to predict male fertility potential in the livestock industry through the analysis of the sperm transcriptome. It provides the gene expression to validate the function of sperm in spermatogenesis, fertilization, and embryo development, as the parameters of male fertility. This review proposes a transcriptomic analysis approach as a high-throughput method to predict the fertility potential of livestock more accurately in the future.
Collapse
Affiliation(s)
- Rhesti Indriastuti
- Reproductive Biology Study Program, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
- Tuah Sakato Technology and Resource Development Center, Department of Animal Husbandry and Animal Health of West Sumatra, Payakumbuh 26229, Indonesia
| | - Berlin Pandapotan Pardede
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Mokhamad Fakhrul Ulum
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Bambang Purwantara
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
8
|
Donnellan EM, Perrier JP, Keogh K, Štiavnická M, Collins CM, Dunleavy EM, Sellem E, Bernecic NC, Lonergan P, Kenny DA, Fair S. Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility. Front Vet Sci 2022; 9:993561. [PMID: 36277068 PMCID: PMC9581129 DOI: 10.3389/fvets.2022.993561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Bulls used in artificial insemination, with apparently normal semen quality, can vary significantly in their field fertility. This study aimed to characterize the transcriptome of spermatozoa from high (HF) and low (LF) fertility bulls at the mRNA and miRNA level in order to identify potential novel markers of fertility. Holstein-Friesian bulls were assigned to either the HF or LF group (n = 10 per group) based on an adjusted national fertility index from a minimum of 500 inseminations. Total RNA was extracted from a pool of frozen-thawed spermatozoa from three different ejaculates per bull, following which mRNA-seq and miRNA-seq were performed. Six mRNAs and 13 miRNAs were found differentially expressed (P < 0.05, FC > 1.5) between HF and LF bulls. Of particular interest, the gene pathways targeted by the 13 differentially expressed miRNAs were related to embryonic development and gene expression regulation. Previous studies reported that disruptions to protamine 1 mRNA (PRM1) had deleterious consequences for sperm chromatin structure and fertilizing ability. Notably, PRM1 exhibited a higher expression in spermatozoa from LF than HF bulls. In contrast, Western Blot analysis revealed a decrease in PRM1 protein abundance for spermatozoa from LF bulls; this was not associated with increased protamine deficiency (measured by the degree of chromatin compaction) or DNA fragmentation, as assessed by flow cytometry analyses. However, protamine deficiency was positively and moderately correlated with the percentage of spermatozoa with DNA fragmentation, irrespective of fertility group. This study has identified potential biomarkers that could be used for improving semen quality assessments of bull fertility.
Collapse
Affiliation(s)
- Eimear M. Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jean-Philippe Perrier
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Miriam Štiavnická
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Eli Sellem
- ALLICE, Innovation and Development, Paris, France
| | - Naomi C. Bernecic
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland,*Correspondence: Sean Fair
| |
Collapse
|
9
|
PRM1 Gene Expression and Its Protein Abundance in Frozen-Thawed Spermatozoa as Potential Fertility Markers in Breeding Bulls. Vet Sci 2022; 9:vetsci9030111. [PMID: 35324839 PMCID: PMC8951773 DOI: 10.3390/vetsci9030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Functional genes and proteins in sperm play an essential role in bulls’ reproductive processes. They are more accurate in determining bull fertility than conventional semen quality tests. Protamine-1 (PRM1) is a gene or protein crucial for packaging and protecting sperm DNA until fertilization affects normal sperm function. This study analyzes the genes and proteins potential from PRM1 as fertility markers for different breeds of bulls utilized in the artificial insemination programs, expected to be an accurate tool in interpreting bull fertility in Indonesia. This study used Limousin, Holstein, and Ongole Grade bulls divided into two groups based on fertility, high-fertility (HF) and low fertility (LF). The semen quality assessment included progressive motility (computer-assisted semen analysis), viability (eosin-nigrosine), and plasma membrane integrity (HOS test). Sperm DNA fragmentation (SDF) was assessed using the acridine orange staining and the Halomax test. Sperm PRM deficiency was evaluated with the chromomycin A3 method. Moreover, PRM1 gene expression was measured using qRT-PCR, and the PRM1 protein abundance was measured with the enzyme immunoassay method. Semen quality values, relative expression of PRM1 gene, and quantity of PRM1 protein were significantly higher (p < 0.05) in HF bulls than in LF bulls. The SDF and PRM deficiency values in LF bulls were significantly higher (p < 0.05) than HF bulls. Additionally, PRM1 at the gene and protein levels correlated significantly (p < 0.01) with fertility. Therefore, PRM1 is a potential candidate for fertility markers in bulls in Indonesia.
Collapse
|
10
|
Finelli R, Moreira BP, Alves MG, Agarwal A. Unraveling the Molecular Impact of Sperm DNA Damage on Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:77-113. [DOI: 10.1007/978-3-030-89340-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
12
|
Nagaki CAP, Hamilton TRDS, Assumpção MEODÁ. What is known so far about bull sperm protamination: a review. Anim Reprod 2022; 19:e20210109. [DOI: 10.1590/1984-3143-ar2021-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
|
13
|
Pardede BP, Maulana T, Kaiin EM, Agil M, Karja NWK, Sumantri C, Supriatna I. The potential of sperm bovine protamine as a protein marker of semen production and quality at the National Artificial Insemination Center of Indonesia. Vet World 2021; 14:2473-2481. [PMID: 34840468 PMCID: PMC8613797 DOI: 10.14202/vetworld.2021.2473-2481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Protamine (PRM) is the major protein in the sperm nucleus and plays an essential role in its normal function. Moreover, PRM has great potential as a protein marker of semen production and quality. This study aimed to assess the potential of sperm bovine PRM as a protein marker of semen production and quality in bulls at the National Artificial Insemination (AI) Center of Indonesia. Materials and Methods: The semen production capacity of each bull was collected from frozen semen production data at the Singosari AI Center for 6 months, and was then divided into two groups (high and low). A total of 440 frozen semen straws from six Limousin (LIM), six Friesian Holstein (FH), six Peranakan Ongole (PO), and four Aceh bulls aged 4-5 years were used in the study. The frozen semen was used to measure the concentration of PRM1, PRM2, and PRM3 using the enzyme immunoassay method. The frozen semen was also used to assess the quality of the semen, including progressive motility (PM) through computer-assisted semen analysis, sperm viability through eosin–nigrosin analysis, and the DNA fragmentation index through Acridine Orange staining. Results: PRM1 was significantly higher in all bull breeds included in the study (p<0.00), followed by PRM2 (p<0.00) and PRM3 (p<0.00). PRM1 significantly affected semen production in LIM, FH, PO, and Aceh bulls (p<0.05). Moreover, PRM2 significantly affected semen production only in FH and Aceh bulls (p<0.05), whereas PRM3 affected this parameter in PO and Aceh bulls exclusively (p<0.05). Consistently and significantly, PRM1 was positively correlated with the PM and viability of sperm and negatively associated with its DNA fragmentation in LIM, FH, PO, and Aceh bulls (p<0.05; p<0.01). The correlation analysis between PRM2 and PRM3 and semen quality parameters varied across all bull breeds; some were positively and negatively correlated (p<0.05; p<0.01), and some were not correlated at all. Conclusion: PRM1 has excellent potential as a protein marker of semen production and quality in bulls at the National AI Center of Indonesia.
Collapse
Affiliation(s)
- Berlin Pandapotan Pardede
- Reproductive Biology Study Program, Faculty of Veterinary Medicine, IPB University, Dramaga, Bogor 16680, Indonesia
| | - Tulus Maulana
- Animal Reproduction Biotechnology Research Group, Research Center for Biotechnology, Indonesian Institute of Sciences, West Java, Indonesia
| | - Ekayanti Mulyawati Kaiin
- Animal Reproduction Biotechnology Research Group, Research Center for Biotechnology, Indonesian Institute of Sciences, West Java, Indonesia
| | - Muhammad Agil
- Department of Veterinary Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Dramaga, Bogor 16680, Indonesia
| | - Ni Wayan Kurniani Karja
- Department of Veterinary Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Dramaga, Bogor 16680, Indonesia
| | - Cece Sumantri
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Dramaga, Bogor 16680, Indonesia
| | - Iman Supriatna
- Department of Veterinary Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Dramaga, Bogor 16680, Indonesia
| |
Collapse
|
14
|
Gloria A, Contri A, Mele E, Fasano S, Pierantoni R, Meccariello R. Kisspeptin Receptor on the Sperm Surface Reflects Epididymal Maturation in the Dog. Int J Mol Sci 2021; 22:ijms221810120. [PMID: 34576283 PMCID: PMC8466692 DOI: 10.3390/ijms221810120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Alongside the well-known central modulatory role, the Kisspeptin system, comprising Kiss1, its cleavage products (Kisspeptins), and Kisspeptin receptor (Kiss1R), was found to regulate gonadal functions in vertebrates; however, its functional role in the male gamete and its localization during maturation have been poorly understood. The present study analyzed Kisspeptin system in dog testis and spermatozoa recovered from different segments of the epididymis, with focus on Kiss1R on sperm surface alongside the maturation during epididymal transit, demonstrated by modification in sperm kinetic, morphology, and protamination. The proteins Kiss1 and Kiss1R were detected in dog testis. The receptor Kiss1R only was detected in total protein extracts from epididymis spermatozoa, whereas dot blot revealed Kiss1 immunoreactivity in the epidydimal fluid. An increase of the Kiss1R protein on sperm surface along the length of the epididymis, with spermatozoa in the tail showing plasma membrane integrity and Kiss1R protein (p < 0.05 vs. epididymis head and body) was observed by flow cytometry and further confirmed by epifluorescence microscopy and Western blot carried on sperm membrane preparations. In parallel, during the transit in the epididymis spermatozoa significantly modified their ability to move and the pattern of motility; a progressive increase in protaminization also occurred. In conclusion, Kisspeptin system was detected in dog testis and spermatozoa. Kiss1R trafficking toward plasma membrane along the length of the epididymis and Kiss1 in epididymal fluid suggested a new functional role of the Kisspeptin system in sperm maturation and storage.
Collapse
Affiliation(s)
- Alessia Gloria
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy;
| | - Alberto Contri
- Faculty of Biosciences and Technologies for Agriculture Food and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
- Correspondence: (A.C.); (R.M.)
| | - Elena Mele
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, 80133 Naples, Italy;
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, 80133 Naples, Italy;
- Correspondence: (A.C.); (R.M.)
| |
Collapse
|
15
|
Ogle RA, Netherton J, Schneider E, Velkov T, Zhang H, Cole N, Hetherington L, Villaverde AISB, Baker MA. Nuclear heterogeneity is prevalent in high-quality fractionated human sperm cells typically used for assisted conception. Hum Reprod 2021; 36:2073-2082. [PMID: 34097020 DOI: 10.1093/humrep/deab134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION What is the nuclear heterogeneity of high-density purified human spermatozoa typically used for IVF purposes. SUMMARY ANSWER The data show that while density gradient separation has improved the overall sperm population, there is still a large degree of nuclear heterogeneity within these cells. WHAT IS KNOWN ALREADY Chromomycin A3 (CMA3) is an important DNA binding fluorochrome for the assessment of male-factor fertility. It is typically used to predict IVF outcomes on entire sperm ejaculates with very high receiver operating characteristic. Here we used CMA3 to characterise typical populations of human spermatozoa that would be used for IVF purposes after density gradient separation. STUDY DESIGN, SIZE, DURATION We compared the intensity of CMA3 binding within high-dense sperm populations obtained from men. Binding heterogeneity was confirmed through fluorescence microscopy and FACS analysis independently. We also looked at CMA3 staining directly with head morphology in this sperm population. Finally, we looked at electron micrographs of nuclear heterogeneity (vacuoles, chromatin compaction) of spermatozoa following density gradient sorting of CMA3-stained cells. PARTICIPANTS/MATERIALS, SETTING, METHODS We used sperm donors who had fathered one or more children. Semen was collected after 2 days abstinence and purified over Percoll gradients. Only the high-quality spermatozoa, the same used for assisted conception, were then used. Cells were stained with CMA3 and sorted using FACS. Following this, electron micrographs were used to assess nuclear heterogeneity of CMA3-dependent sorted spermatozoa. MAIN RESULTS AND THE ROLE OF CHANCE CMA3 staining occurs within morphologically normal as well as abnormal spermatozoa. High-intensity CMA3-stained sperm possessed large vacuoles that were not seen in the low-CMA3 population. In addition, the high-CMA3 stained cells possess higher amounts of nuclear granulation. LIMITATIONS, REASONS FOR CAUTION The present study only describes the issues within the chromatin of these cells and does not suggest an alternate selection technique. WIDER IMPLICATIONS OF THE FINDINGS CMA3 is one of the better reported prognostic assays in predicting pregnancy outcomes, especially in cases where the male is at fault. However, it is clear that even in fractionated populations of human spermatozoa, there are sperm cells that are morphologically normal yet possess high levels of CMA3 staining and chromatin granulation. The implication of this is that the embryologist, whom selects on the basis of sperm morphology, may choose a cell with poor chromatin, which may lead to poor embryo outcomes. STUDY FUNDING/COMPETING INTEREST(S) The project was funded by the National Health and Medical Research council, APP1118943. The authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- R A Ogle
- Department of Biological Science, University of Newcastle, Callaghan, NSW, Australia
| | - J Netherton
- Department of Biological Science, University of Newcastle, Callaghan, NSW, Australia
| | - E Schneider
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia
| | - T Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia
| | - H Zhang
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia
| | - N Cole
- Department of Biological Science, University of Newcastle, Callaghan, NSW, Australia
| | - L Hetherington
- Department of Biological Science, University of Newcastle, Callaghan, NSW, Australia
| | | | - M A Baker
- Department of Biological Science, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
16
|
de Lima AO, Afonso J, Edson J, Marcellin E, Palfreyman R, Porto-Neto LR, Reverter A, Fortes MRS. Network Analyses Predict Small RNAs That Might Modulate Gene Expression in the Testis and Epididymis of Bos indicus Bulls. Front Genet 2021; 12:610116. [PMID: 33995471 PMCID: PMC8120238 DOI: 10.3389/fgene.2021.610116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Spermatogenesis relies on complex molecular mechanisms, essential for the genesis and differentiation of the male gamete. Germ cell differentiation starts at the testicular parenchyma and finishes in the epididymis, which has three main regions: head, body, and tail. RNA-sequencing data of the testicular parenchyma (TP), head epididymis (HE), and tail epididymis (TE) from four bulls (three biopsies per bull: 12 samples) were subjected to differential expression analyses, functional enrichment analyses, and co-expression analyses. The aim was to investigate the co-expression and infer possible regulatory roles for transcripts involved in the spermatogenesis of Bos indicus bulls. Across the three pairwise comparisons, 3,826 differentially expressed (DE) transcripts were identified, of which 384 are small RNAs. Functional enrichment analysis pointed to gene ontology (GO) terms related to ion channel activity, detoxification of copper, neuroactive receptors, and spermatogenesis. Using the regulatory impact factor (RIF) algorithm, we detected 70 DE small RNAs likely to regulate the DE transcripts considering all pairwise comparisons among tissues. The pattern of small RNA co-expression suggested that these elements are involved in spermatogenesis regulation. The 3,826 DE transcripts (mRNAs and small RNAs) were further subjected to co-expression analyses using the partial correlation and information theory (PCIT) algorithm for network prediction. Significant correlations underpinned the co-expression network, which had 2,216 transcripts connected by 158,807 predicted interactions. The larger network cluster was enriched for male gamete generation and had 15 miRNAs with significant RIF. The miRNA bta-mir-2886 showed the highest number of connections (601) and was predicted to down-regulate ELOVL3, FEZF2, and HOXA13 (negative co-expression correlations and confirmed with TargetScan). In short, we suggest that bta-mir-2886 and other small RNAs might modulate gene expression in the testis and epididymis, in Bos indicus cattle.
Collapse
Affiliation(s)
- Andressa O de Lima
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliana Afonso
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Janette Edson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Robin Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Laercio R Porto-Neto
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
17
|
Narud B, Khezri A, Zeremichael TT, Stenseth EB, Heringstad B, Johannisson A, Morrell JM, Collas P, Myromslien FD, Kommisrud E. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev 2021; 88:187-200. [PMID: 33634579 DOI: 10.1002/mrd.23461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
In this study, the complexity of chromatin integrity was investigated in frozen-thawed semen samples from 37 sires with contrasting fertility, expressed as 56-day non-return rates (NR56). Protamine deficiency, thiols, and disulfide bonds were assessed and compared with previously published data for DNA fragmentation index (DFI) and high DNA stainability (HDS). In addition, in vitro embryo development and sperm DNA methylation were assessed using semen samples from 16 of these bulls. The percentages of DFI and HDS were negatively associated with NR56 and cleavage rate and positively associated with sperm protamine deficiency (p < 0.05). Significant differences in cleavage and blastocyst rates were observed between bulls of high and low NR56. However, once fertilization occurred, further development into blastocysts was not associated with NR56. The differential methylation analysis showed that spermatozoa from bulls of low NR56 were hypermethylated compared to bulls of high NR56. Pathway analysis showed that genes annotated to differentially methylated cytosines could participate in different biological pathways and have important biological roles related to bull fertility. In conclusion, sperm cells from Norwegian Red bulls of inferior fertility have less compact chromatin structure, higher levels of DNA damage, and are hypermethylated compared with bulls of superior fertility.
Collapse
Affiliation(s)
- Birgitte Narud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Else-Berit Stenseth
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Bjørg Heringstad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anders Johannisson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| |
Collapse
|
18
|
Abstract
Sex selection through sperm sorting offers advantages in regards selection pressure in high-producing livestock. However, the sex-sorting process results in sperm membrane and DNA damage that ultimately decrease fertility. We hypothesized that given the role of protamines in DNA packaging, protamine deficiency could account, at least partially, for the DNA damage observed following sperm sex sorting. To test this, we compared protamine status between unsexed and sexed spermatozoa from two bulls using the fluorochrome chromomycin A3 (CMA3) and flow cytometry. Then, we assessed embryo development following in vitro fertilization (IVF) using the same sperm treatments. Overall, sperm protamination was not different between sexed and unsexed semen. However, one of the two bulls displayed higher rates of protamine deficiency for both unsexed and sexed semen (P < 0.05). Moreover, unsexed semen from this bull yielded lower blastocyst (P < 0.05) and blastocyst hatching rates than unsexed sperm from the other bull. CMA3-positive staining was negatively correlated with cleavage (R2 85.1, P = 0.003) and blastocyst hatching (R2 87.6, P = 0.006) rates in unsexed semen. In conclusion, while the sex-sorting process had no effect on sperm protamine content, we observed a bull effect for sperm protamination, which correlated to embryo development rates following IVF.
Collapse
|
19
|
Global Methylation and Protamine Deficiency in Ram Spermatozoa Correlate with Sperm Production and Quality but Are Not Influenced by Melatonin or Season. Animals (Basel) 2020; 10:ani10122302. [PMID: 33291841 PMCID: PMC7762013 DOI: 10.3390/ani10122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Though environmental factors can alter the epigenome of mammalian spermatozoa, it is currently unclear whether these epigenetic changes are linked to sperm production, quality and fertility. This study aimed to identify whether the hormone melatonin, responsible for upregulating ram reproductive function, is able to alter broad epigenetic markers in spermatozoa, namely sperm global methylation and protamine deficiency. It was also investigated whether these parameters corresponded to ram endocrinology, semen production and quality. Though no effects of season or melatonin were found, both sperm global methylation and protamine deficiency correlated with several semen production and quality parameters. These moderate associations with sperm production and quality support that sperm protamine deficiency and global methylation are broadly indicative of testicular function. Abstract This study assessed whether the seasonal effects of melatonin that upregulate ram reproductive function alter sperm global methylation or protamine deficiency and whether these parameters corresponded to ram endocrinology, semen production and quality. Ejaculates were assessed from rams that received melatonin implants (n = 9) or no implants (n = 9) during the non-breeding season. Ejaculates (n = 2/ram/week) were collected prior to implantation (week 0), 1, 6 and 12 weeks post implantation and during the following breeding season (week 30). Flow cytometry was used to assess the sperm global methylation and protamine deficiency in each ejaculate, which had known values for sperm concentration, motility, morphology, DNA fragmentation, seminal plasma levels of melatonin, anti-Mullerian hormone and inhibin A. Serum levels of testosterone and melatonin were also evaluated. Though there was no effect of melatonin or season, sperm protamine deficiency was negatively correlated with sperm production and seminal plasma levels of anti-Mullerian hormone and positively correlated with sperm DNA fragmentation and morphology. Global methylation of spermatozoa was positively correlated with sperm DNA fragmentation, morphology and serum testosterone and negatively correlated with sperm motility. These moderate associations with sperm production and quality suggest that sperm protamine deficiency and global methylation are indicative of ram testicular function.
Collapse
|
20
|
Hitit M, Ugur MR, Dinh TTN, Sajeev D, Kaya A, Topper E, Tan W, Memili E. Cellular and Functional Physiopathology of Bull Sperm With Altered Sperm Freezability. Front Vet Sci 2020; 7:581137. [PMID: 33195596 PMCID: PMC7644894 DOI: 10.3389/fvets.2020.581137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to ascertain the cellular and functional parameters as well as ROS related changes in sperm from bulls with varied sperm freezability phenotypes. Using principal component analysis (PCA), the variables were reduced to two principal components, of which PC1 explained 48% of the variance, and PC2 explained 24% of the variance, and clustered animals into two distinct groups of good freezability (GF) and poor freezability (PF). In ROS associated pathophysiology, there were more dead superoxide anion positive (Dead SO+) sperm in GF bulls than those in PF (15.72 and 12.00%; P = 0.024), and that Dead SO+ and live hydrogen positive cells (live H2O2+) were positively correlated with freezability, respectively (R2 = 0.55, P < 0.0130) and (rs = 0.63, P = 0.0498). Related to sperm functional integrity, sperm from PF bulls had greater dead intact acrosome (DIAC) than those from GF bulls (26.29 and 16.10%; P = 0.028) whereas sperm from GF bulls tended to have greater live intact acrosome (LIAC) than those from PF bulls (64.47 and 50.05%; P = 0.084). Sperm with dead reacted acrosome (DRAC) in PF bulls were greater compared to those in GF (19.27 and 11.48%; P = 0.007). While DIAC (R2 = 0.56, P = 0.0124) and DRAC (R2 = 0.57, P < 0.0111) were negatively correlated with freezability phenotype, LIAC (R2 = 0.36, P = 0.0628) was positively correlated. Protamine deficiency (PRM) was similar between sperm from GF and PF bulls (7.20 and 0.64%; P = 0.206) and (rs = 0.70, P = 0.0251) was correlated with freezability. Sperm characteristics associated with cryotolerance are important for advancing both fundamental andrology and assisted reproductive technologies across mammals.
Collapse
Affiliation(s)
- Mustafa Hitit
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States.,Department of Animal Genetics, Kastamonu University, Kastamonu, Turkey
| | - Muhammet Rasit Ugur
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Thu Tran Nhat Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Dishnu Sajeev
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Abdullah Kaya
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey
| | | | - Wei Tan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
21
|
Ukogu OA, Smith AD, Devenica LM, Bediako H, McMillan RB, Ma Y, Balaji A, Schwab RD, Anwar S, Dasgupta M, Carter AR. Protamine loops DNA in multiple steps. Nucleic Acids Res 2020; 48:6108-6119. [PMID: 32392345 PMCID: PMC7293030 DOI: 10.1093/nar/gkaa365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Protamine proteins dramatically condense DNA in sperm to almost crystalline packing levels. Here, we measure the first step in the in vitro pathway, the folding of DNA into a single loop. Current models for DNA loop formation are one-step, all-or-nothing models with a looped state and an unlooped state. However, when we use a Tethered Particle Motion (TPM) assay to measure the dynamic, real-time looping of DNA by protamine, we observe the presence of multiple folded states that are long-lived (∼100 s) and reversible. In addition, we measure folding on DNA molecules that are too short to form loops. This suggests that protamine is using a multi-step process to loop the DNA rather than a one-step process. To visualize the DNA structures, we used an Atomic Force Microscopy (AFM) assay. We see that some folded DNA molecules are loops with a ∼10-nm radius and some of the folded molecules are partial loops—c-shapes or s-shapes—that have a radius of curvature of ∼10 nm. Further analysis of these structures suggest that protamine is bending the DNA to achieve this curvature rather than increasing the flexibility of the DNA. We therefore conclude that protamine loops DNA in multiple steps, bending it into a loop.
Collapse
Affiliation(s)
- Obinna A Ukogu
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Adam D Smith
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Ryan B McMillan
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Yuxing Ma
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Ashwin Balaji
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Robert D Schwab
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Shahzad Anwar
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | | | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| |
Collapse
|
22
|
Seifi-Jamadi A, Zhandi M, Kohram H, Luceño NL, Leemans B, Henrotte E, Latour C, Demeyere K, Meyer E, Van Soom A. Influence of seasonal differences on semen quality and subsequent embryo development of Belgian Blue bulls. Theriogenology 2020; 158:8-17. [PMID: 32916520 PMCID: PMC7462895 DOI: 10.1016/j.theriogenology.2020.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 11/05/2022]
Abstract
Belgian Blue bulls are more susceptible to high temperature and humidity index (THI) than most other cattle breeds. Here, we investigated whether high ambient temperature during summer affected semen quality and subsequent embryo development in Belgian Blue cattle. For this purpose, semen samples were collected from six healthy mature Belgian Blue bulls in March (Low THI group; THI between 30.6 and 56.4) and August 2016 (High THI group; maximum THI of 83.7 during meiotic and spermiogenic stages of spermatogenesis; 14–28 days prior to semen collection) respectively. Motility, morphology, acrosome integrity, chromatin condensation, viability, and reactive oxygen species production were assessed for frozen-thawed semen. Moreover, the efficiency of blastocyst production from the frozen-thawed semen samples of the two groups was determined in vitro. Blastocyst quality was determined by assessing inner cell mass ratio and apoptotic cell ratio. Fresh ejaculates showed a higher sperm concentration in low THI when compared to the high THI group (P ≤ 0.05), whereas semen volume, subjective motility, and total sperm output were not affected (P > 0.05). In frozen-thawed semen, total and progressive motility, viability, and straight-line velocity were lower in high THI compared to the low THI group (P < 0.05), while H2O2 concentration, aberrant chromatin condensation, and abnormal spermatozoa were higher in the high THI group (P < 0.05). Blastocyst rates were significantly higher when low THI samples were used (P < 0.05). Moreover, the total cell number and trophectoderm cells were significantly higher (P < 0.05) in blastocysts derived from low THI samples, whereas the apoptotic cell ratio was significantly higher (P < 0.01) in blastocysts derived from high THI spermatozoa. In summary, our data show that elevated ambient temperature and humidity during summer can decrease the quality of frozen-thawed spermatozoa in Belgian Blue bulls and also affect subsequent embryo development. Belgian Blue bulls are more susceptible to heat stress than most other cattle breeds. Heat stress negatively affected the quality of Belgian Blue bulls’ spermatozoa. Summer high ambient temperature increased H2O2 production in thawed spermatozoa. Summer heat exposure increased morphological abnormalities of bull spermatozoa. Embryo development was decreased after the bulls were exposed to summer heat stress.
Collapse
Affiliation(s)
- Afshin Seifi-Jamadi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran; Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Hamid Kohram
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Núria Llamas Luceño
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Emilie Henrotte
- AWE Group, Production and Distribution Direction- Inovéo, Chemin Du Tersoit 32, 5590 Ciney, Belgium
| | - Catherine Latour
- AWE Group, Production and Distribution Direction- Inovéo, Chemin Du Tersoit 32, 5590 Ciney, Belgium
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
23
|
Fortes MRS, Porto-Neto LR, Satake N, Nguyen LT, Freitas AC, Melo TP, Scalez DCB, Hayes B, Raidan FSS, Reverter A, Boe-Hansen GB. X chromosome variants are associated with male fertility traits in two bovine populations. Genet Sel Evol 2020; 52:46. [PMID: 32787790 PMCID: PMC7425018 DOI: 10.1186/s12711-020-00563-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Twenty-five phenotypes were measured as indicators of bull fertility (1099 Brahman and 1719 Tropical Composite bulls). Measurements included sperm morphology, scrotal circumference, and sperm chromatin phenotypes such as DNA fragmentation and protamine deficiency. We estimated the heritability of these phenotypes and carried out genome-wide association studies (GWAS) within breed, using the bovine high-density chip, to detect quantitative trait loci (QTL). RESULTS Our analyses suggested that both sperm DNA fragmentation and sperm protamine deficiency are heritable (h2 from 0.10 to 0.22). To confirm these first estimates of heritability, further studies on sperm chromatin traits, with larger datasets are necessary. Our GWAS identified 12 QTL for bull fertility traits, based on at least five polymorphisms (P < 10-8) for each QTL. Five QTL were identified in Brahman and another seven in Tropical Composite bulls. Most of the significant polymorphisms detected in both breeds and nine of the 12 QTL were on chromosome X. The QTL were breed-specific, but for some traits, a closer inspection of the GWAS results revealed suggestive single nucleotide polymorphism (SNP) associations (P < 10-7) in both breeds. For example, the QTL for inhibin level in Braham could be relevant to Tropical Composites too (many polymorphisms reached P < 10-7 in the same region). The QTL for sperm midpiece morphological abnormalities on chromosome X (QTL peak at 4.92 Mb, P < 10-17) is an example of a breed-specific QTL, supported by 143 significant SNPs (P < 10-8) in Brahman, but absent in Tropical Composites. Our GWAS results add evidence to the mammalian specialization of the X chromosome, which during evolution has accumulated genes linked to spermatogenesis. Some of the polymorphisms on chromosome X were associated to more than one genetically correlated trait (correlations ranged from 0.33 to 0.51). Correlations and shared polymorphism associations support the hypothesis that these phenotypes share the same underlying cause, i.e. defective spermatogenesis. CONCLUSIONS Genetic improvement for bull fertility is possible through genomic selection, which is likely more accurate if the QTL on chromosome X are considered in the predictions. Polymorphisms associated with male fertility accumulate on this chromosome in cattle, as in humans and mice, suggesting its specialization.
Collapse
Affiliation(s)
- Marina R. S. Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Brisbane, QLD 4072 Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Saint Lucia Campus, Brisbane, QLD 4072 Australia
| | | | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343 Australia
| | - Loan T. Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Brisbane, QLD 4072 Australia
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ana Claudia Freitas
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Thaise P. Melo
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Daiane Cristina Becker Scalez
- Department of Animal Science, School of Agricultural and Veterinarian Science, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Ben Hayes
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Saint Lucia Campus, Brisbane, QLD 4072 Australia
| | | | | | - Gry B. Boe-Hansen
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343 Australia
| |
Collapse
|
24
|
Kumaresan A, Das Gupta M, Datta TK, Morrell JM. Sperm DNA Integrity and Male Fertility in Farm Animals: A Review. Front Vet Sci 2020; 7:321. [PMID: 32637425 PMCID: PMC7317013 DOI: 10.3389/fvets.2020.00321] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
The accurate prediction of male fertility is of major economic importance in the animal breeding industry. However, the results of conventional semen analysis do not always correlate with field fertility outcomes. There is evidence to indicate that mammalian fertilization and subsequent embryo development depend, in part, on the inherent integrity of the sperm DNA. Understanding the complex packaging of mammalian sperm chromatin and assessment of DNA integrity could potentially provide a benchmark in clinical infertility. In the era of assisted reproduction, especially when in-vitro fertilization or gamete intrafallopian transfer or intracytoplasmic sperm injection is used, assessment of sperm DNA integrity is important because spermatozoa are not subjected to the selection process occurring naturally in the female reproductive tract. Although sperm DNA integrity testing measures a significant biological parameter, its precise role in the infertility evaluation in farm animals remains unclear. In this review, the earlier findings on sperm DNA integrity in relation to male fertility are compiled and analyzed. Furthermore, the causes and consequences of sperm DNA damage are described, together with a review of advances in methods for detection of sperm DNA damage, and the prognostic value of sperm DNA quality on male fertility.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of National Dairy Research Institute (ICAR), Bengaluru, India
| | - Mohua Das Gupta
- Theriogenology Laboratory, Southern Regional Station of National Dairy Research Institute (ICAR), Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, National Dairy Research Institute (ICAR), Karnal, India
| | - Jane M. Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
25
|
Indriastuti R, Ulum MF, Arifiantini RI, Purwantara B. Individual variation in fresh and frozen semen of Bali bulls ( Bos sondaicus). Vet World 2020; 13:840-846. [PMID: 32636577 PMCID: PMC7311882 DOI: 10.14202/vetworld.2020.840-846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/16/2020] [Indexed: 11/17/2022] Open
Abstract
AIM This study aimed to analyze the individual factors influencing the sperm quality of Bali bulls at Baturiti Artificial Insemination (AI) center. MATERIALS AND METHODS Semen that was ejaculated from nine Bali bulls was collected using artificial vaginas (n=5/bull). Semen ejaculates were evaluated immediately after collection to measure the quality of the fresh semen, including semen volume, sperm concentration, progressive motility, membrane integrity (MI), and abnormal morphology. Frozen semen was evaluated for progressive sperm motility, concentration, viability, MI, abnormal morphology, and deoxyribonucleic acid (DNA) fragmentation. Other secondary data, focusing on semen quantity (semen volume and sperm concentration), were also collected from frozen the semen production data of the Baturiti AI center from 2017 to 2019. Data were analyzed statistically using a completely randomized design, and one-way analysis of variance was applied to find differences among individual bulls. RESULTS Significant differences (p<0.05) were found among the bulls in semen volume, sperm motility, concentration, and MI of the fresh semen. Significant differences (p<0.05) were also found among the bulls in sperm motility, viability, MI, abnormal morphology, and DNA fragmentation of the frozen semen. CONCLUSION Individual variation in all the tested sperm parameters of the fresh semen of Bali bulls, except sperm viability and abnormalities, was noted. Similarly, individual variation in all the tested sperm parameters in frozen semen, except sperm concentration, was noted. Therefore, individual factors can be used for selecting a superior bull in Bali cattle.
Collapse
Affiliation(s)
- R. Indriastuti
- Study Program of Reproductive Biology, Graduate School, IPB University, Bogor, Indonesia
| | - M. F. Ulum
- Study Program of Reproductive Biology, Graduate School, IPB University, Bogor, Indonesia
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - R. I. Arifiantini
- Study Program of Reproductive Biology, Graduate School, IPB University, Bogor, Indonesia
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - B. Purwantara
- Study Program of Reproductive Biology, Graduate School, IPB University, Bogor, Indonesia
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
26
|
Boe-Hansen GB, Rêgo JPA, Satake N, Venus B, Sadowski P, Nouwens A, Li Y, McGowan M. Effects of increased scrotal temperature on semen quality and seminal plasma proteins in Brahman bulls. Mol Reprod Dev 2020; 87:574-597. [PMID: 32083367 DOI: 10.1002/mrd.23328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Environmental temperature has effects on sperm quality with differences in susceptibility between cattle subspecies and breeds, but very little is known about the seminal plasma protein (SPP) changes resulting from testicular heat stress. Scrotal insulation (SI) for 48 hr was applied to Brahman (Bos indicus) bulls. Semen was collected at 3-day intervals from before, until 74 days post-SI. The changes in sperm morphology and motility following SI were comparable to previously reported and differences were detected in measures of sperm chromatin conformation as early as 8 days post-SI. New proteins spots, in the SPP two-dimensional (2-D) gels, were apparent when comparing pre-SI with 74 days post-SI, and SPP identified as associated with mechanisms of cellular repair and protection. Similar trends between 2-D gel and Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) data was observed, with SWATH-MS able to quantify individual SPP that otherwise were not resolved on 2-D gel. The SPP assessment at peak sperm damage (21-24 days) showed a significant difference in 29 SPP (adjusted p < .05), and identified six proteins with change in abundance in the SI group. In conclusion both spermatozoa and SPP composition of bulls are susceptible to temperature change incurred by SI, and SPP markers for testicular heat insults may be detected.
Collapse
Affiliation(s)
- Gry Brandt Boe-Hansen
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - João Paulo A Rêgo
- Federal Institute of Education, Science and Technology of Ceará, Boa Viagem Campus, Fortaleza, Brazil
| | - Nana Satake
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bronwyn Venus
- Agri-Science Department of Agriculture, Fisheries and Forestry, Brisbane, QLD, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Yutao Li
- CSIRO Agriculture and Food, St. Lucia, QLD, Australia
| | - Michael McGowan
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Baldi E, Tamburrino L, Muratori M, Degl'Innocenti S, Marchiani S. Adverse effects of in vitro manipulation of spermatozoa. Anim Reprod Sci 2020; 220:106314. [PMID: 32089373 DOI: 10.1016/j.anireprosci.2020.106314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Development of in vitro reproduction techniques has not only offered some infertile couples the possibility to have a child, it also revolutionized animal reproduction. Although in vitro reproduction techniques for humans or domestic and non-domestic animals have been designed to mimic in vivo conditions, modifications due to environmental effects or in vitro manipulation of gametes and embryos are unavoidable. For male gametes, in vitro manipulations include techniques to select spermatozoa, cryopreservation and other incubation procedures, during which spermatozoa may be exposed to oxidative stress and other insults that may damage their functions and DNA. The aim of this review is to provide an overview of key studies reporting sperm damage during in vitro manipulation, with particular focus on effects on DNA integrity, a fundamental factor for fertilization and transmission of paternal genetic information to offspring.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Departments of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Lara Tamburrino
- Departments of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Monica Muratori
- Experimental and Clinical Biomedical Science, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Selene Degl'Innocenti
- Azienda Ospedaliera Universitaria Careggi, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Sara Marchiani
- Departments of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
28
|
Khezri A, Narud B, Stenseth EB, Johannisson A, Myromslien FD, Gaustad AH, Wilson RC, Lyle R, Morrell JM, Kommisrud E, Ahmad R. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics 2019; 20:897. [PMID: 31775629 PMCID: PMC6880426 DOI: 10.1186/s12864-019-6307-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sperm DNA integrity is considered essential for successful transmission of the paternal genome, fertilization and normal embryo development. DNA fragmentation index (DFI, %) has become a key parameter in the swine artificial insemination industry to assess sperm DNA integrity. Recently, in some elite Norwegian Landrace boars (boars with excellent field fertility records), a higher level of sperm DFI has been observed. In order to obtain a better understanding of this, and to study the complexity of sperm DNA integrity, liquid preserved semen samples from elite boars with contrasting DFI levels were examined for protamine deficiency, thiol profile and disulphide bonds. Additionally, the DNA methylation profiles of the samples were determined by reduced representation bisulphite sequencing (RRBS). RESULTS In this study, different traits related to sperm DNA integrity were investigated (n = 18 ejaculates). Upon liquid storage, the levels of total thiols and disulphide bonds decreased significantly, while the DFI and protamine deficiency level increased significantly. The RRBS results revealed similar global patterns of low methylation from semen samples with different levels of DFI (low, medium and high). Differential methylation analyses indicated that the number of differentially methylated cytosines (DMCs) increased in the low-high compared to the low-medium and the medium-high DFI groups. Annotating the DMCs with gene and CpG features revealed clear differences between DFI groups. In addition, the number of annotated transcription starting sites (TSS) and associated pathways in the low-high comparison was greater than the other two groups. Pathway analysis showed that genes (based on the closest TSS to DMCs) corresponding to low-high DFI comparison were associated with important processes such as membrane function, metabolic cascade and antioxidant defence system. CONCLUSION To our knowledge, this is the first study evaluating DNA methylation in boar sperm cells with different levels of DFI. The present study shows that sperm cells with varying levels of DNA fragmentation exhibit similar global methylation, but different site-specific DNA methylation signatures. Moreover, with increasing DNA fragmentation in spermatozoa, there is an increase in the number of potentially affected downstream genes and their respective regulatory pathways.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Birgitte Narud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Else-Berit Stenseth
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Anders Johannisson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Ann Helen Gaustad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Topigs Norsvin, Hamar, Norway
| | - Robert C Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Robert Lyle
- Department of Medical Genetics and Norwegian Sequencing Centre, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway.
| |
Collapse
|
29
|
Cortés-Gutiérrez EI, De La Vega CG, Bartolomé-Nebreda J, Gosálvez J. Characterization of DNA cleavage produced by seminal plasma using leukocytes as a cell target. Syst Biol Reprod Med 2019; 65:420-429. [PMID: 31539284 DOI: 10.1080/19396368.2019.1645236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Numerous studies have shown the presence of DNA lesions in human spermatozoa affecting sperm quality. However, the nature of this anomaly and its relationship with patient etiology are poorly understood since different mechanisms can be involved in the formation of these novel DNA configurations including the action of a seminal plasma nuclease activity. The objective of this study was to assess the capacity of seminal plasma for producing endogenous DNA cleavage using nuclei of peripheral blood leukocytes as external targets. For this purpose, we used seminal plasma from fertile males with normal semen parameters to produce DNA cleavage in a sample of leukocytes. Three different tests were performed to visualize DNA cleavage: (a) DNase activity detection, (b) DNA Breakage Detection-Fluorescence In Situ Hybridization (DBD-FISH), and (c) Two-dimensional comet assay (Two-tail comet assay). Our results demonstrate that: (i) the seminal plasma is able to cleave DNA compacted with histones in the leukocytes; (ii) this DNA cleavage can be associated with DNase activity and (iii) DNA damage mainly corresponds to single-strand DNA breaks. In conclusion, capacity of seminal plasma for producing DNA cleavage represents a solid contribution to expand the analysis of the standard seminal profile and could constitute a putative diagnostic tool for evaluating male infertility.Abbreviations: ALS: alkali labile sites; ART: Assisted Reproduction Technologies; DBD-FISH: DNA Breakage Detection-Fluorescence In Situ Hybridization; DNA: deoxyribonucleic acid; DSBs-DNA: double-strand DNA; FITC: Fluorescein IsoThioCyanate; GEDA: Gravity Enforced Diffusion Assays; PBS: phosphate-buffered saline; ROS: Reactive Oxigen Species; SSBs-DNA: single-strand DNA; SSC: saline-sodium citrate.
Collapse
Affiliation(s)
- Elva I Cortés-Gutiérrez
- Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | | | | | - Jaime Gosálvez
- Department of Biology, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
30
|
Abstract
In the quest for predicting fertility of an individual, enhancing semen handling, dilution and storage protocols, and understanding the impact of environment and, andrologists have changed their approaches to semen analysis. The technologies used today are fast developing and readily implemented in research. Semen is one of a few naturally occurring monocellular suspensions, so sperm function analysis by flow cytometry (FC) and utilization of fluorochromes is an ideal technique for high throughput, objective and accurate analysis. The complementary use of microscopical assessments by Computer-Assisted Semen Analysis (CASA), where sperm cell parameters can be objectively assessed is equally important. The objectivity and repeatability of these techniques have driven research on the function, identification of heterogeneity and fertility of the ejaculate. The wealth of knowledge obtained from the application of these powerful methods has changed our view of the spermatozoon. Although there is some application of these methods in the industry producing boar semen for artificial insemination (AI) and to eliminate sires of sub-standard semen quality, uptake of advanced methods is still slow. Instruments are becoming cheaper and technically more user friendly. Standardization of methodology and optimization of instrument settings is important for full implementation of these systems, including comparison between labs. This review provides an update on two technologies: flow cytometry and CASA for objective analysis of boar semen quality.
Collapse
Affiliation(s)
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia
| |
Collapse
|
31
|
Hamilton TRS, Simões R, Mendes CM, Goissis MD, Nakajima E, Martins EAL, Visintin JA, Assumpção MEOA. Detection of protamine 2 in bovine spermatozoa and testicles. Andrology 2019; 7:373-381. [PMID: 30920782 DOI: 10.1111/andr.12610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sperm DNA integrity is crucial for transmission of genetic information to future generations and DNA damage can occur during chromatin packaging. Chromatin packaging involves the replacement of somatic nucleosomal histones by nuclear proteins called protamines. Protamine 1 (PRM1) is transcribed and translated in spermatids of all mammals; however, protamine 2 (PRM2) is transcribed in low levels in spermatids and it is not yet described in bull mature spermatozoa. OBJECTIVES The aim of this study was to assess gene and protein expression of PRM2 and corroborate gene and protein expression of PRM1 in bull spermatozoa and testis. MATERIALS AND METHODS For this purpose, absolute q-RT-PCR was performed to calculate the number of copies of PRM1 and PRM2 mRNAs in bovine epididymal spermatozoa and testicular tissue. Western blot and mass spectrometry were performed to identify PRM1 and PRM2 in samples of bovine epididymal spermatozoa. Samples of bovine testicular tissue were collected to identify PRM1 and PRM2 by immunohistochemistry. RESULTS We evaluated that the number of PRM1 mRNA copies was about hundred times higher than PRM2 mRNA copies in sperm and testicular samples (p < 0.0001). In addition, we estimated the PRM1: PRM2 ratio based on mRNA number of copies. In spermatozoa, the ratio was 1: 0.014, and in testicle, the ratio was 1: 0.009. We also evaluated the immunolocalization for PRM1 and PRM2 in bovine testis, and both proteins were detected in spermatids. Western blot and mass spectrometry in bovine epididymal spermatozoa confirmed these results. CONCLUSION Our work identifies, for the first time, PRM2 in bovine epididymal spermatozoa and in testis. Further studies are still needed to understand the role of PRM2 on the chromatin of the spermatozoa and to verify how possible changes in PRM2 levels may influence the bull fertility.
Collapse
Affiliation(s)
- T R S Hamilton
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| | - R Simões
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| | - C M Mendes
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| | - M D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| | - E Nakajima
- Process Development Laboratory, Inovation Division, Butantan Institute, São Paulo, Brazil
| | - E A L Martins
- Process Development Laboratory, Inovation Division, Butantan Institute, São Paulo, Brazil
| | - J A Visintin
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| | - M E O A Assumpção
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| |
Collapse
|
32
|
Penitente-Filho JM, Silva FFE, Facioni Guimarães S, Waddington B, da Costa EP, Gomez León V, Siqueira JB, Silva Okano D, Piccolo Maitan P, Guimarães JD. Relationship of testicular biometry with semen variables in breeding soundness evaluation of Nellore bulls. Anim Reprod Sci 2018; 196:168-175. [DOI: 10.1016/j.anireprosci.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/05/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
33
|
Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology 2018; 113:102-112. [DOI: 10.1016/j.theriogenology.2018.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
|
34
|
Boe-Hansen GB, Fortes MRS, Satake N. Morphological defects, sperm DNA integrity, and protamination of bovine spermatozoa. Andrology 2018; 6:627-633. [PMID: 29633574 DOI: 10.1111/andr.12486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 01/05/2023]
Abstract
The association between sperm morphology characteristics and DNA conformation and integrity is still controversial. In bulls, major morphological sperm abnormalities have been associated with reduced fertility, and morphological assessment is used to provide an indication of potential fertility of the individual. Sperm DNA fragmentation and damage has a negative effect on embryo development and subsequently fertility, with bull spermatozoa generally displaying low levels of DNA damage and tight chromatin. However, sensitive methods for detecting chromatin damage may reveal associations with morphological defects. The objective was to determine whether morphological sperm abnormalities and variables expressing sperm DNA integrity and protamination are correlated in bulls, using the sperm chromatin structure assay (SCSA) and the sperm protamine deficiency assay (SPDA). Electroejaculated samples (n = 1009) from two-year-old tropically adapted bulls were split and fixed and submitted to microscopic sperm morphology assessment, and snap-frozen for sperm nuclear integrity assessments by SPDA and SCSA. For SPDA, the variables were defective (MCB) and deprotaminated (HCB), and for SCSA, the variables were DNA fragmentation index (DFI) and high DNA stainability (HDS). HCB correlated with DFI; τKen2 = 0.317 and HDS; 0.098, and MCB correlated with DFI; 0.183 (p < 0.001). The percentage of morphological normal spermatozoa was correlated negatively to DFI; τKen2 = -0.168, MCB; -0.116 and HCB; -0.137 (p < 0.001). HCB and DFI were both positively correlated to head defects, proximal droplets, and spermatogenic immaturity, but not to distal droplets, vacuoles, or diadems. Sperm DNA integrity and protamination, using the SCSA and SPDA, respectively, in bulls show associations with morphological parameters, particularly with head shape abnormalities and indicators of spermatogenic immaturity, including proximal droplets. The vacuoles and diadem defects were not correlated with sperm nuclear integrity, and hence, these are likely physiological features that may not directly affect sperm chromatin configuration.
Collapse
Affiliation(s)
- G B Boe-Hansen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - M R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - N Satake
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
35
|
Relationships between bacteriospermia, DNA integrity, nuclear protamine alteration, sperm quality and ICSI outcome. Reprod Biol 2018; 18:115-121. [DOI: 10.1016/j.repbio.2018.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 11/21/2022]
|
36
|
Can scrotal circumference-based selection discard bulls with good productive and reproductive potential? PLoS One 2018; 13:e0193103. [PMID: 29494597 PMCID: PMC5832217 DOI: 10.1371/journal.pone.0193103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
Nonlinear mixed models were used to describe longitudinal scrotal circumference (SC) measurements of Nellore bulls. Models comparisons were based on Akaike’s information criterion, Bayesian information criterion, error sum of squares, adjusted R2 and percentage of convergence. Sequentially, the best model was used to compare the SC growth curve in bulls divergently classified according to SC at 18–21 months of age. For this, bulls were classified into five groups: SC < 28cm; 28cm ≤ SC < 30cm, 30cm ≤ SC < 32cm, 32cm ≤ SC < 34cm and SC ≥ 34cm. Michaelis-Menten model showed the best fit according to the mentioned criteria. In this model, β1 is the asymptotic SC value and β2 represents the time to half-final growth and may be related to sexual precocity. Parameters of the individual estimated growth curves were used to create a new dataset to evaluate the effect of the classification, farms, and year of birth on β1 and β2 parameters. Bulls of the largest SC group presented a larger predicted SC along all analyzed periods; nevertheless, smaller SC group showed predicted SC similar to intermediate SC groups (28cm ≤ SC < 32cm), around 1200 days of age. In this context, bulls classified as improper for reproduction at 18–21 months old can reach a similar condition to those considered as good condition. In terms of classification at 18–21 months, asymptotic SC was similar among groups, farms and years; however, β2 differed among groups indicating that differences in growth curves are related to sexual precocity. In summary, it seems that selection based on SC at too early ages may lead to discard bulls with suitable reproductive potential.
Collapse
|
37
|
Effect of bovine sperm chromatin integrity evaluated using three different methods on in vitro fertility. Theriogenology 2017; 107:142-148. [PMID: 29154161 DOI: 10.1016/j.theriogenology.2017.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 01/17/2023]
Abstract
In vitro fertility potential of individual bulls is still relatively uncharacterized. Classical sperm analysis does not include the evaluation of all sperm characteristics and thus, some cell compartments could be neglected. In humans, sperm DNA integrity has already proven to have major influence in embryo development and assisted reproduction techniques successfully. In bovine, some studies already correlated chromatin integrity with field fertility. However, none of those have attempted to relate DNA assessment approaches such as chromatin deficiency (CMA3), chromatin stability (SCSA; AO+) and DNA fragmentation (COMET assay) to predict in vitro bull fertility. To this purpose, we selected bulls with high and low in vitro fertility (n = 6/group), based on embryo development rate (blastocyst/cleavage rate). We then performed CMA3, SCSA test and COMET assay to verify if the difference of in vitro fertility may be related to DNA alterations evaluated by these assays. For the three tests performed, our results showed only differences in the percentage of cells with chromatin deficiency (CMA3+; high: 0.19 ± 0.03 vs low: 0.04 ± 0.04; p = 0.03). No difference for chromatin stability and any of COMET assay categories (grade I to grade IV) was observed between high and low in vitro fertility bulls. A positive correlation between AO + cells and grade IV cells was found. Despite the difference between groups in CMA3 analysis, our results suggest that protamine deficiency in bovine spermatozoa may not have a strong biological impact to explain the difference of in vitro fertility between the bulls used in this study.
Collapse
|
38
|
Yao X, Yang H, Zhang Y, Ren C, Nie H, Fan Y, Zhou W, Wang S, Feng X, Wang F. Characterization of GALNTL5 gene sequence and expression in ovine testes and sperm. Theriogenology 2017; 95:54-61. [PMID: 28460680 DOI: 10.1016/j.theriogenology.2017.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
The polypeptide N-acetylgalactosaminyltransferase-like protein 5 (GALNTL5), which belongs to the polypeptide N-acetylgalactosaminyltransferase (pp-GalNAc-T) gene family, is a newly identified gene that is specifically expressed in testis and involved in spermatogenesis. However, there is no data showing the existence of GALNTL5 in ram testis at various developmental stages and its influence on sperm motility. Therefore, the objectives of the present study were to evaluate the presence of GALNTL5 in the testis of 3-24 months (M) ram and to investigate the expression of GALNTL5 in spermatozoa with different motilities. We detected a 1602 bp cDNA fragment of GALNTL5 that included a 1326 bp coding sequence, encoding 441 amino acids and 90 and 185 bp of the 5' and 3' untranslated regions, respectively. The GALNTL5 amino acid sequence showed 51.87-83.48% identity with the sequences of proteins from other species. It was detected exclusively in the testis and the levels of both the mRNA and protein were progressively increased with age. Immunohistochemistry further revealed that GALNTL5 specifically localized in the elongating spermatids and spermatozoa, and it was demonstrated to be strongly concentrated in the head, neck, and mid-piece region of spermatozoa by immunocytochemistry. The sperm density and the percentage of live sperm in the high motility group (≥80%) were significantly higher than in the low motility group (≤50%), and the reverse trend was observed with the abnormal sperm. Western blot analysis showed that the protein expression of PGK2, ALDOA, and GALNTL5 were significantly higher in the high motility group than in the low motility group. Overall, the data suggest that GALNTL5 is an important functional molecule during spermatogenesis. Moreover, it is the first to suggest that the expression level of GALNTL5 is positively correlated with the sperm motility.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hua Yang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanli Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Caifang Ren
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haitao Nie
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yixuan Fan
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjun Zhou
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuting Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xu Feng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
39
|
Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol 2017; 16:89-98. [PMID: 29259456 PMCID: PMC5661804 DOI: 10.1002/rmb2.12021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Background Although artificial insemination (AI) technique is an established biotechnology for bovine reproduction, the results of AI (conception rates) have a tendency to decline gradually. To our annoyance, moreover, AI‐subfertile bulls have been occasionally found in the AI centers. To resolve these serious problems, it is necessary to control the sperm quality more strictly by the examinations of sperm molecules. Methods We reviewed a number of recent articles regarding potentials of bovine sperm proteins as the biomarkers for bull AI‐subfertility and also showed our unpublished supplemental data on the bull AI‐subfertility associated proteins. Main findings Bull AI‐subfertility is caused by the deficiency or dysfunctions of various molecules including regulatory proteins of ATP synthesis, acrosomal proteins, nuclear proteins, capacitation‐related proteins and seminal plasma proteins. Conclusion In order to control the bovine sperm quality more strictly by the molecular examinations, it is necessary to select suitable sperm protein biomarkers for the male reproductive problems which happen in the AI centers.
Collapse
Affiliation(s)
- Hiroshi Harayama
- Division of Animal Science Department of Bioresource Science Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kenta Minami
- Division of Animal Science Department of Bioresource Science Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kazumi Kishida
- Department of Obstetrics and Gynecology Shiga University of Medical Science Otsu Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases Osaka University Suita Osaka Japan
| |
Collapse
|
40
|
Peña, Jr ST, Gummow B, Parker AJ, Paris DBBP. Revisiting summer infertility in the pig: could heat stress-induced sperm DNA damage negatively affect early embryo development? ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an16079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Temperature is a crucial factor in mammalian spermatogenesis. The scrotum, pampiniform plexus, and cremaster and dartos muscles in mammals are specific adaptations to ensure sperm production in a regulated environment 4−6°C below internal body temperature. However, the limited endogenous antioxidant systems inherent in mammalian spermatozoa compounded by the loss of cytosolic repair mechanisms during spermatogenesis, make the DNA in these cells particularly vulnerable to oxidative damage. Boar sperm is likely to be more susceptible to the effects of heat stress and thus oxidative damage due to the relatively high unsaturated fatty acids in the plasma membrane, low antioxidant capacity in boar seminal plasma, and the boar’s non-pendulous scrotum. Heat stress has a significant negative impact on reproductive performance in piggeries, which manifests as summer infertility and results in productivity losses that amount to millions of dollars. This problem is particularly prevalent in tropical and subtropical regions where ambient temperatures rise beyond the animal’s zone of thermal comfort. Based on preliminary studies in the pig and other species, this article discusses whether heat stress could induce sufficient DNA damage in boar sperm to significantly contribute to the high rates of embryo loss and pregnancy failure observed in the sow during summer infertility. Heat stress-induced damage to sperm DNA can lead to disrupted expression of key developmental genes essential for the differentiation of early cell lineages, such as the trophectoderm, and can distort the timely formation of the blastocyst; resulting in a failure of implantation and ultimately pregnancy loss. Confirming such a link would prompt greater emphasis on boar management and strategies to mitigate summer infertility during periods of heat stress.
Collapse
|
41
|
Prochowska S, Niżański W, Partyka A. Comparative analysis of in vitro characteristics of fresh and frozen-thawed urethral and epididymal spermatozoa from cats (Felis domesticus). Theriogenology 2016; 86:2063-72. [DOI: 10.1016/j.theriogenology.2016.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/14/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
|
42
|
Kipper BH, Trevizan JT, Carreira JT, Carvalho IR, Mingoti GZ, Beletti ME, Perri SHV, Franciscato DA, Pierucci JC, Koivisto MB. Sperm morphometry and chromatin condensation in Nelore bulls of different ages and their effects on IVF. Theriogenology 2016; 87:154-160. [PMID: 27712828 DOI: 10.1016/j.theriogenology.2016.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
The aim of this study was to evaluate the chromatin packing and sperm head morphometry of cryopreserved semen of Nelore bulls (Bos taurus indicus) of different ages. Furthermore, the influence of the degree of chromatin compaction on in vitro embryo production (IVP) was investigated. Forty bulls were divided into three groups: young (1.8-2 years), adult (3.5-7 years), and senile (8-14.3 years). The ejaculates were frozen according to standards established by the Artificial Insemination Center located in the Southeast of Brazil. Toluidine blue staining was used for simultaneous evaluation of the sperm chromatin and sperm head morphometry. Chromomycin A3 (CMA3) was applied to analyze sperm protamination and IVP for embryonic development. Spermatozoa of young bulls presented higher values for area (A, pixels), perimeter (P, pixels), and width (W, pixels) compared to adults and senile (young: A = 1848.5 ± 119.79, P = 10.23 ± 0.29, and W = 1.95 ± 0.1; adults: A = 1672.9 ± 104.46, P = 9.86 ± 0.33, and W = 1.81 ± 0.06; senile: A = 1723.1 ± 124.41, P = 9.97 ± 0.33, and W = 1.83 ± 0.09; P < 0.0001) and showed higher protamination deficiency when analyzed by CMA3 (young: 1.57 ± 0.76; adults: 1.09 ± 0.63, and senile: 0.90 ± 0.59; P < 0.05). Likewise, variables of sperm head size (A, P, and W) and protamination assessed by CMA3 showed negative correlation with age and positive correlation with ellipticity, evaluated by toluidine blue method (P < 0.05). Sperm head area was larger in spermatozoa presenting chromatin instabilities than spermatozoa without chromatin alteration (P < 0.0001). There was no difference in IVP when using semen with larger or smaller portions of spermatozoa with chromatin instabilities, indicating that the proportion of sperm with abnormal chromatin compaction (4%-16.15%) did not interfere with early embryonic development. From our results, it can be concluded that sperm of young Nelore bulls have larger heads compared to adults and senile due to reduced protamine content when evaluated by CMA3 and higher proportion of major sperm defects assessed by differential interference contrast microscopy.
Collapse
Affiliation(s)
- B H Kipper
- Department of Medicine, Surgery and Animal Reproduction, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - J T Trevizan
- Department of Medicine, Surgery and Animal Reproduction, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - J T Carreira
- Department of Animal Reproduction and Obstetrics, University of Rio Preto (UNIRP), São José do Rio Preto, São Paulo, Brazil
| | - I R Carvalho
- Department of Medicine, Surgery and Animal Reproduction, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - G Z Mingoti
- Department of Support, Production and Animal Health, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - M E Beletti
- Laboratory of Histology, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - S H V Perri
- Department of Support, Production and Animal Health, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - D A Franciscato
- Department of Medicine, Surgery and Animal Reproduction, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - J C Pierucci
- Department of Preventive Veterinarian Medicine and Animal Reproduction, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - M B Koivisto
- Department of Medicine, Surgery and Animal Reproduction, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
43
|
The Epigenetic Consequences of Paternal Exposure to Environmental Contaminants and Reproductive Toxicants. Curr Environ Health Rep 2016; 3:202-13. [DOI: 10.1007/s40572-016-0101-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology 2016; 4:789-99. [DOI: 10.1111/andr.12216] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/19/2022]
Affiliation(s)
- K. Ni
- Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie; Justus-Liebig-Universität; Giessen Germany
| | - A.-N. Spiess
- Department of Andrology; University Hospital Hamburg-Eppendorf; Hamburg Germany
| | - H.-C. Schuppe
- Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie; Justus-Liebig-Universität; Giessen Germany
| | - K. Steger
- Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie; Justus-Liebig-Universität; Giessen Germany
| |
Collapse
|
45
|
Strand J, Ragborg MM, Pedersen HS, Kristensen TN, Pertoldi C, Callesen H. Effects of post-mortem storage conditions of bovine epididymides on sperm characteristics: investigating a tool for preservation of sperm from endangered species. CONSERVATION PHYSIOLOGY 2016; 4:cow069. [PMID: 28066554 PMCID: PMC5196027 DOI: 10.1093/conphys/cow069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 05/13/2023]
Abstract
The aim of this study was to establish and validate a reliable and efficient protocol for the recovery and cryopreservation of epididymal spermatozoa used for in vitro fertilization, using bulls of two different age classes. Testicles from 26 (37-51 weeks old, group 1) and 19 (52-115 weeks old, group 2) Danish Holstein bulls were collected after slaughter and stored at 5°C. After 0, 24 or 48 h, epididymides were isolated and spermatozoa collected. Assessments included spermatozoal motility, viability and morphology before and after cryopreservation and in vitro embryo production. Results showed that live spermatozoa can be collected from epididymides of bulls after their death. Storage of the testicles at 5°C for 24 h followed by cryopreservation of recovered epididymal spermatozoa resulted in 21% (group 1) and 31% (group 2) blastocysts produced in vitro. These results illustrate that epididymal spermatozoa recovered from testicles kept in specific conditions can be used to preserve genetic material from endangered and threatened species or populations in nature as well as in domestic and zoo animals.
Collapse
Affiliation(s)
- Julie Strand
- Randers Regnskov, Tørvebryggen 11, 8900 Randers, Denmark
- Corresponding author: Randers Regnskov, Tørvebryggen 11, 8900 Randers, Denmark. Tel: +4530248748.
| | | | - Hanne S. Pedersen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | | | - Cino Pertoldi
- Randers Regnskov, Tørvebryggen 11, 8900 Randers, Denmark
- Aalborg Zoo, Mølleparkvej 63, 9000 Aalborg, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
46
|
Harlev A, Agarwal A, Gunes SO, Shetty A, du Plessis SS. Smoking and Male Infertility: An Evidence-Based Review. World J Mens Health 2015; 33:143-60. [PMID: 26770934 PMCID: PMC4709430 DOI: 10.5534/wjmh.2015.33.3.143] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Many studies have reported that the contents of cigarette smoke negatively affect sperm parameters, seminal plasma, and various other fertility factors. Nevertheless, the actual effect of smoking on male fertility is not clear. The effect of smoking on semen parameters is based on the well-established biological finding that smoking increases the presence of reactive oxygen species, thereby resulting in oxidative stress (OS). OS has devastating effects on sperm parameters, such as viability and morphology, and impairs sperm function, hence reducing male fertility. However, not all studies have come to the same conclusions. This review sheds light upon the arguable association between smoking and male fertility and also assesses the impact of non-smoking routes of tobacco consumption on male infertility. It also highlights the evidence that links smoking with male infertility, including newly emerging genetic and epigenetic data, and discusses the clinical implications thereof.
Collapse
Affiliation(s)
- Avi Harlev
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.; Fertility and In Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Sezgin Ozgur Gunes
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.; Department of Medical Biology, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Amit Shetty
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Stefan Simon du Plessis
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
47
|
Gosálvez J, López-Fernández C, Fernández JL, Esteves SC, Johnston SD. Unpacking the mysteries of sperm DNA fragmentation. ACTA ACUST UNITED AC 2015. [DOI: 10.1177/2058915815594454] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although it has been thirty years since publication of one of the most influential papers on the value of assessing sperm DNA damage, andrologists have yet to reach a general consensus about how to apply this seminal parameter to improve or predict reproductive outcomes. Studies that have attempted to establish a causal relationship between sperm DNA damage and pregnancy success have often resulted in conflicting findings, eroding the practitioner’s confidence to incorporate this phenomenon into their appraisal of fertility. In this review we have identified and answered ten important unresolved questions commonly asked by andrologists with respect to the relationship between sperm DNA damage and fertility. We answer questions ranging from a basic comprehension of biological mechanisms and external factors that contribute to increased levels of sperm DNA damage in the ejaculate to what type of DNA lesions we might be expect to occur and what are some of the consequences of DNA damage on early embryonic development. We also address some of the fundamental technical issues associated with the most appropriate measurement of sperm DNA damage and the need to attenuate the confounding impacts of iatrogenic damage. We conclude by asking whether it is possible to reduce elevated levels of sperm DNA damage therapeutically.
Collapse
Affiliation(s)
- J Gosálvez
- Genetics Unit, Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - C López-Fernández
- Genetics Unit, Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - JL Fernández
- Laboratory of Molecular Genetics and Radiobiology, Oncology Center of Galicia, A Coruña, Galicia, Spain
| | - SC Esteves
- Androfert, Andrology and Human Reproduction Clinic, Campinas, São Paulo, Brazil
| | - SD Johnston
- School of Agriculture and Food Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
48
|
Carreira J, Trevizan J, Kipper B, Perri S, Carvalho I, Rodrigues L, Silva C, Koivisto M. Impaired protamination and sperm DNA damage in a Nellore bull with high percentages of morphological sperm defects in comparison to normospermic bulls. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-7046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The routine semen evaluation assessing sperm concentration, motility and morphology, does not identify subtle defects in sperm chromatin architecture. Bulls appear to have stable chromatin, with low levels of DNA fragmentation. However, the nature of fragmentation and its impact on fertility remain unclear and there are no detailed reports characterizing the DNA organization and damage in this species. The intensive genetic selection, the use of artificial insemination and in vitro embryo production associated to the cryopreservation process can contribute to the chromatin damage and highlights the importance of sperm DNA integrity for the success of these technologies. Frozen-thawed semen samples from three ejaculates from a Nellore bull showed high levels of morphological sperm abnormalities (55.8±5.1%), and were selected for complementary tests. Damage of acrosomal (76.9±8.9%) and plasma membranes (75.7±9.3%) as well as sperm DNA strand breaks (13.8±9.5%) and protamination deficiency (3.7±0.6%) were significantly higher compared to the values measured in the semen of five Nellore bulls with normospermia (24.3±3.3%; 24.5±6.1%; 0.6±0.5%; 0.4±0.6% for acrosome, plasma membrane, DNA breaks and protamine deficiency, respectively) (P<0.05). Motility and percentage of spermatozoa with low mitochondrial potential showed no differences between groups. This study shows how routine semen analyses (in this case morphology) may point to the length and complexity of sperm cell damage emphasizing the importance of sperm function testing.
Collapse
|
49
|
Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E. Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod 2015; 92:92. [PMID: 25673563 DOI: 10.1095/biolreprod.114.124255] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/06/2015] [Indexed: 01/29/2023] Open
Abstract
During fertilization, spermatozoa make essential contributions to embryo development by providing oocyte activating factors, centrosomal components, and paternal chromosomes. Protamines are essential for proper packaging of sperm DNA; however, in contrast to the studies of oocyte-related female infertility, the influence of sperm chromatin structure on male infertility has not been evaluated extensively. The objective of this study was to determine the sperm chromatin content of bull spermatozoa by evaluating DNA fragmentation, chromatin maturity/protamination, PRM1 protein status, and nuclear shape in spermatozoa from bulls with different fertility. Relationships between protamine 1 (PRM1) and the chromatin integrity were ascertained in spermatozoa from Holstein bulls with varied (high vs. low) but acceptable fertility. Sperm DNA fragmentation and chromatin maturity (protamination) were tested using Halomax assay and toluidine blue staining, respectively. The PRM1 content was assayed using Western blotting and in-gel densitometry, flow cytometry, and immunocytochemistry. Fragmentation of DNA was increased and chromatin maturity significantly reduced in spermatozoa from low-fertility bulls compared to those from high-fertility bulls. Field fertility scores of the bulls were negatively correlated with the percentage of spermatozoa displaying reduced protamination and fragmented DNA using toluidine blue and Halomax, respectively. Bull fertility was also positively correlated with PRM1 content by Western blotting and flow cytometry. However, detection of PRM1 content by Western blotting alone was not predictive of bull fertility. In immunocytochemistry, abnormal spermatozoa showed either a lack of PRM1 or scattered localization in the apical/acrosomal region of the nuclei. The nuclear shape was distorted in spermatozoa from low-fertility bulls. In conclusion, we showed that inadequate amount and localization of PRM1 were associated with defects in sperm chromatin structure, coinciding with reduced fertility in bulls. These findings are highly significant because they reveal molecular and morphological phenotypes of mammalian spermatozoa that influence fertility.
Collapse
Affiliation(s)
- Sule Dogan
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| | - Peter Vargovic
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | - Lauren E Belser
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| | | | | | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, Missouri Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - John Parrish
- Department of Animal Science, University of Wisconsin, Madison, Madison, Wisconsin
| | - Einko Topper
- Alta Genetics Incorporated, Watertown, Wisconsin
| | - Erdoğan Memili
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| |
Collapse
|