1
|
Bamia A, Sinane M, Naït-Saïdi R, Dhiab J, Keruzoré M, Nguyen PH, Bertho A, Soubigou F, Halliez S, Blondel M, Trollet C, Simonelig M, Friocourt G, Béringue V, Bihel F, Voisset C. Anti-prion Drugs Targeting the Protein Folding Activity of the Ribosome Reduce PABPN1 Aggregation. Neurotherapeutics 2021; 18:1137-1150. [PMID: 33533011 PMCID: PMC8423950 DOI: 10.1007/s13311-020-00992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
Prion diseases are caused by the propagation of PrPSc, the pathological conformation of the PrPC prion protein. The molecular mechanisms underlying PrPSc propagation are still unsolved and no therapeutic solution is currently available. We thus sought to identify new anti-prion molecules and found that flunarizine inhibited PrPSc propagation in cell culture and significantly prolonged survival of prion-infected mice. Using an in silico therapeutic repositioning approach based on similarities with flunarizine chemical structure, we tested azelastine, duloxetine, ebastine, loperamide and metixene and showed that they all have an anti-prion activity. Like flunarizine, these marketed drugs reduced PrPSc propagation in cell culture and in mouse cerebellum organotypic slice culture, and inhibited the protein folding activity of the ribosome (PFAR). Strikingly, some of these drugs were also able to alleviate phenotypes due to PABPN1 nuclear aggregation in cell and Drosophila models of oculopharyngeal muscular dystrophy (OPMD). These data emphasize the therapeutic potential of anti-PFAR drugs for neurodegenerative and neuromuscular proteinopathies.
Collapse
Affiliation(s)
- Aline Bamia
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Maha Sinane
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Rima Naït-Saïdi
- Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, mRNA Regulation and Development, Montpellier, France
| | - Jamila Dhiab
- Sorbanne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F75013, Paris, France
| | - Marc Keruzoré
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Phu Hai Nguyen
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- Host Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Agathe Bertho
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Flavie Soubigou
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sophie Halliez
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
- Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Univ. Lille, F-59000, Lille, France
| | - Marc Blondel
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Capucine Trollet
- Sorbanne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F75013, Paris, France
| | - Martine Simonelig
- Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, mRNA Regulation and Development, Montpellier, France
| | | | - Vincent Béringue
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, LIT, UMR7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, Illkirch, F-67400, France.
| | - Cécile Voisset
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France.
| |
Collapse
|
2
|
Papamichael K, Delitheos B, Mourouzis I, Pantos C, Tiligada E. L-Thyroxine induces thermotolerance in yeast. Cell Stress Chaperones 2019; 24:469-473. [PMID: 30737613 PMCID: PMC6439117 DOI: 10.1007/s12192-019-00978-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022] Open
Abstract
The cellular stress response (CSR) is a universal inducible reaction modulated, among others, by heat, drugs, and hormones. We aimed to investigate the role of L-thyroxine (T4) on the heat shock (HS) response in Saccharomyces cerevisiae. The CSR was evaluated by determining growth and viability of post-logarithmic phase grown yeast cultures after HS at 53 °C for 30 min. We found that long-term T4 exposure can induce a dose-dependent and Hsp90 and H+ trafficking-related thermotolerance in yeast.
Collapse
Affiliation(s)
- Konstantinos Papamichael
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, M. Asias 75, GR-11527, Athens, Greece.
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Basil Delitheos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, M. Asias 75, GR-11527, Athens, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, M. Asias 75, GR-11527, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, M. Asias 75, GR-11527, Athens, Greece
| | - Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, M. Asias 75, GR-11527, Athens, Greece
| |
Collapse
|