1
|
Krishnan Kesavan R, Begum S, Das P, Nayak PK. Hurdle effect of thermosonication and non‐thermal processing on the quality characteristics of fruit juices: An overview. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Radha Krishnan Kesavan
- Department of FET Central Institute of Technology, Deemed to be University Under MoE Government of India Assam Kokrajhar India
| | - Sehnaj Begum
- Department of FET Central Institute of Technology, Deemed to be University Under MoE Government of India Assam Kokrajhar India
| | - Puja Das
- Department of FET Central Institute of Technology, Deemed to be University Under MoE Government of India Assam Kokrajhar India
| | - Prakash Kumar Nayak
- Department of FET Central Institute of Technology, Deemed to be University Under MoE Government of India Assam Kokrajhar India
| |
Collapse
|
2
|
Wahia H, Fakayode OA, Mustapha AT, Zhou C, Dabbour M. Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores. Crit Rev Food Sci Nutr 2022; 64:4561-4586. [PMID: 36412233 DOI: 10.1080/10408398.2022.2143475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, PR China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
3
|
Effect of TiO 2-ZnO-MgO Mixed Oxide on Microbial Growth and Toxicity against Artemia salina. NANOMATERIALS 2019; 9:nano9070992. [PMID: 31295802 PMCID: PMC6669554 DOI: 10.3390/nano9070992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Mixed oxide nanoparticles (MONs, TiO2–ZnO–MgO) obtained by the sol-gel method were characterized by transmission electron microscopy, (TEM, HRTEM, and SAED) and thermogravimetric analysis (TGA/DTGA–DTA). Furthermore, the effect of MONs on microbial growth (growth profiling curve, lethal and sublethal effect) of Escherichia coli, Salmonella paratyphi, Staphylococcus aureus and Listeria monocytogenes, as well as the toxicity against Artemia salina by the lethal concentration test (LC50) were evaluated. MONs exhibited a near-spherical in shape, polycrystalline structure and mean sizes from 17 to 23 nm. The thermal analysis revealed that the anatase phase of MONs is completed around 480–500 °C. The normal growth of all bacteria tested is affected by the MONs presence compared with the control group. MONs also exhibited a reduction on the plate count from 0.58 to 2.10 log CFU/mL with a sublethal cell injury from 17 to 98%. No significant toxicity within 24 h was observed on A. salina. A bacteriostatic effect of MONs on bacteria was evidenced, which was strongly influenced by the type of bacteria, as well as no toxic effects (LC50 >1000 mg/L; TiO2–ZnO (5%)–MgO (5%)) on A. salina were detected. This study demonstrates the potential of MONs for industrial applications.
Collapse
|
4
|
Mathieu L, Keraval A, Declercq NF, Block JC. Assessment of a low-frequency ultrasound device on prevention of biofilm formation and carbonate deposition in drinking water systems. ULTRASONICS SONOCHEMISTRY 2019; 52:41-49. [PMID: 30718177 DOI: 10.1016/j.ultsonch.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
A device generating low-frequency and low-intensity ultrasound waves was used for mitigating biofilm accumulation and scaling. Two systems were tested: a lab-scale plate heat exchanger operated with continuously recycled water and a continually fed flow-through drinking water pilot used for mimicking water circulation in pipes. Initial deposition of bacterial cells was not prevented by ultrasound wave treatment. However, whatever the tested system, both further calcium carbonate deposition and biofilm growth were markedly inhibited. Biofilms formed in reactors subjected to low-frequency and low-intensity ultrasound waves were weakly attached to the material. Even though the activity of bacteria was affected as shown by their lower cultivability, membrane permeability did not appear compromised. Ultrasound technology sounds very promising in both the mitigation of drinking water biofilm and carbonate accumulation.
Collapse
Affiliation(s)
- Laurence Mathieu
- EPHE, PSL Research University, UMR 7564, LCPME, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Anaïs Keraval
- Lorraine University, CNRS, UMR 7564, LCPME, F-54600 Villers-lès-Nancy, France
| | - Nico F Declercq
- Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, F-57070 Metz, France
| | - Jean-Claude Block
- Lorraine University, CNRS, UMR 7564, LCPME, F-54600 Villers-lès-Nancy, France
| |
Collapse
|
5
|
Hu J, Zhang N, Li L, Zhang N, Ma Y, Zhao C, Wu Q, Li Y, He N, Wang X. The synergistic bactericidal effect of vancomycin on UTMD treated biofilm involves damage to bacterial cells and enhancement of metabolic activities. Sci Rep 2018; 8:192. [PMID: 29317687 PMCID: PMC5760522 DOI: 10.1038/s41598-017-18496-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
In this study, the synergistic effect of vancomycin, a cell wall synthesis inhibitor, and ultrasound-targeted microbubble destruction (UTMD), on cell viability of Staphylococcus epidermidis, embedded in biofilm, was investigated. Biofilms are the leading causes of antibiotic-resistant bacterial infections of medical implants and prosthetics worldwide. The antibiotic-resistant nature of biofilm-embedded pathogens poses a critical challenge to the medical community. Previously, studies have demonstrated the efficacy of using ultrasound waves and UTMD in circumventing this problem. However, the mechanism(s) underlying this phenomenon was not clear. Here, the present study showed that both ultrasound and UTMD damaged the cell wall structure of S. epidermidis, and floccules and fragments from damaged cells were observed on transmission electron microscope micrograph. However, the cell membrane integrity was not seriously affected by treatments, and the treatment increased the metabolic activity levels of the dormant biofilm-embedded bacteria, detected by confocal laser scanning microscope and flow cytometry, which could make them susceptible to the effect of the antibiotic. Thus, the biological mechanism underlying the efficacy of the combined treatment involving UTMD and vancomycin in the case of S. epidermidis biofilm was dissected, which may be utilized for further investigations on other biofilm pathogens before clinical use.
Collapse
Affiliation(s)
- Jian Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277# West Yanta Road, Xi'an, 710061, Shaanxi province, P.R. China
| | - Ning Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277# West Yanta Road, Xi'an, 710061, Shaanxi province, P.R. China
| | - Lifang Li
- Department of Emergency, First Affiliated Hospital of Xi'an Jiaotong University, 277# West Yanta Road, Xi'an, 710061, Shaanxi province, P.R. China
| | - Ning Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277# West Yanta Road, Xi'an, 710061, Shaanxi province, P.R. China
| | - Yanfen Ma
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277# West Yanta Road, Xi'an, 710061, Shaanxi province, P.R. China
| | - Chedong Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277# West Yanta Road, Xi'an, 710061, Shaanxi province, P.R. China
| | - Qian Wu
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277# West Yanta Road, Xi'an, 710061, Shaanxi province, P.R. China
| | - Ying Li
- Department of Clinical Laboratory, Shaanxi Kang Fu Hospital, 52# Second Electronic Road, Xi'an, 710065, Shaanxi province, P.R. China
| | - Nianan He
- Department of Ultrasound, Anhui Provincial Hospital of Anhui Medical University, 4# Lujiang Road, Hefei, 230001, Anhui province, P.R. China.
| | - Xiaoqin Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277# West Yanta Road, Xi'an, 710061, Shaanxi province, P.R. China.
| |
Collapse
|
6
|
Anaya-Esparza LM, Méndez-Robles MD, Sayago-Ayerdi SG, García-Magaña MDL, Ramírez-Mares MV, Sánchez-Burgos JA, Montalvo-González E. Effect of thermosonication on pathogenic bacteria, quality attributes and stability of soursop nectar during cold storage. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1321587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Luis M. Anaya-Esparza
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, México
- División de Ciencias Biomédicas, Departamento de Ciencias Pecuarias y Agrícolas, Universidad de Guadalajara Centro Universitario de los Altos, Tepatitlán de Morelos, México
| | - María D. Méndez-Robles
- División de Ciencias Biomédicas, Departamento de Ciencias Pecuarias y Agrícolas, Universidad de Guadalajara Centro Universitario de los Altos, Tepatitlán de Morelos, México
| | - Sonia G. Sayago-Ayerdi
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, México
| | | | - Marco V. Ramírez-Mares
- Departamento de Ingeniería Bioquímica, Instituto Tecnológico de Morelia, Morelia Mich, México
| | - Jorge A. Sánchez-Burgos
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, México
| | | |
Collapse
|
7
|
Anaya-Esparza LM, Velázquez-Estrada RM, Roig AX, García-Galindo HS, Sayago-Ayerdi SG, Montalvo-González E. Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.11.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|