1
|
Rice P, Daly K, Tuohy P, Murnane JG, Nag R, Fenton O. Evaluating connectivity risk of farm roadway runoff with waters - Development and sensitivity analysis of a semi quantitative risk model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158114. [PMID: 35988624 DOI: 10.1016/j.scitotenv.2022.158114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Farm roadways are an important sub-component of the nutrient transfer continuum (NTC) and roadway runoff (RR), leading to nutrient pressures in receiving waters at different times of the year at catchment scale. This study developed a semi-quantitative risk assessment model for dairy farms that once populated with data identifies roadway sections where RR enters waters. The model contains parameters that represent source, mobilisation and transport-connectivity stages of the NTC defined as continuous or categorical variables. Each parameter has a corresponding scoring system in terms of connectivity likelihood to waters (L) and the associated impact on water quality (I) from which field data can be converted to a risk score (RS). The connectivity or impact risk of any roadway section is a sum of all parameter scores, i.e. 'Total Risk Score' (TRS). The risk scores were classified into 5 categories (very low, low, moderate, high and very high). Field data from seven farms enabled five equal interval risk score classifications to be developed (very low (110-134), low (135-158), moderate (159-182), high (183-206), very high (207-230)). Fieldwork data showed differences between the number of mapped roadway sections ranging from 35 to 76, with the lowest and highest risk scores being 110 and 230, respectively. Out of all sections scored 25.9 %, 45.6 %, 20.4 %, 6.4 %, and 2 % were in very low, low, moderate, high and very high categories, respectively. In terms of management, only 8.4 % (i.e. high or very high scores) had all components of the NTC and required RR mitigation. An examination of the mobilisation parameter showed that the % of roadway sections needing mitigation is likely to increase if rainfall increases on these farms. An uncertainty assessment limiting the model to different levels of connectivity confirmed that all components of the NTC and those with greater than moderate risk should only be considered in future mitigation plans. Future work should concentrate on adapting this methodology to a wide range of farm enterprises.
Collapse
Affiliation(s)
- P Rice
- Environmental Research Centre, Teagasc, Johnstown Castle, Co., Wexford, Ireland
| | - K Daly
- Environmental Research Centre, Teagasc, Johnstown Castle, Co., Wexford, Ireland
| | - P Tuohy
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co., Cork, Ireland
| | - J G Murnane
- School of Engineering, University of Limerick, Limerick, Ireland
| | - R Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland
| | - O Fenton
- Environmental Research Centre, Teagasc, Johnstown Castle, Co., Wexford, Ireland.
| |
Collapse
|
2
|
Alarcon P, Marco-Jimenez F, Horigan V, Ortiz-Pelaez A, Rajanayagam B, Dryden A, Simmons H, Konold T, Marco C, Charnley J, Spiropoulos J, Cassar C, Adkin A. A review of cleaning and disinfection guidelines and recommendations following an outbreak of classical scrapie. Prev Vet Med 2021; 193:105388. [PMID: 34098231 DOI: 10.1016/j.prevetmed.2021.105388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Classical scrapie is a prion disease of small ruminants, the infectious agent of which has been shown to be extremely persistent in the environment. Cleaning and disinfection (C&D) after a scrapie outbreak is currently recommended by many governments' veterinary advisors and implemented in most farms affected. Yet, the effectiveness of these procedures remains unclear. The aim of this study was to review existing literature and guidelines regarding farm C&D protocols following classical scrapie outbreaks and assess their effectiveness and the challenges that translation of policy and legislative requirements present at a practical level. A review of the literature was conducted to identify the on-farm C&D protocols used following outbreaks of scrapie, assess those materials with high risk for persistence of the scrapie agent on farms, and review the existing evidence of the effectiveness of recommended C&D protocols. An expert workshop was also organised in Great Britain (GB) to assess: the decision-making process used when implementing C&D protocols on GB farms, the experts' perceptions on the effectiveness of these protocols and changes needed, and their views on potential recommendations for policy and research. Outputs of the literature review revealed that the current recommended protocol for C&D [1 h treatment with sodium hypochlorite containing 20,000 ppm free chlorine or 2 M sodium hydroxide (NaOH)] is based on laboratory experiments. Only four field farm experiments have been conducted, indicating a lack of data on effectiveness of C&D protocols on farms by the re-occurrence of scrapie infection post re-stocking. Recommendations related to the control of outdoor environment, which are difficult and expensive to implement, vary between countries. The expert workshop concluded that there are no practical, cost-effective C&D alternatives to be considered at this time, with control therefore based on C&D only in combination with additional time restrictions on re-stocking and replacement with non-susceptible livestock or more genetically resistant types, where available. Participants agreed that C&D should still be completed on scrapie affected farms, as it is considered to be "good disease practice" and likely to reduce the levels of the prion protein. Participants felt that any additional protocols developed should not be "too prescriptive" (should not be written down in specific policies) because of significant variation in farm types, farm equipment and installations. Under this scenario, control of classical scrapie on farms should be designed with a level of C&D in combination with re-stocking temporal ban and replacement with livestock of limited susceptibility.
Collapse
Affiliation(s)
- Pablo Alarcon
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.
| | - Francisco Marco-Jimenez
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Department of Animal Sciences, Universitat Politècnica de València, C/Camino de vera s/n, Valencia, 46071, Spain
| | - Verity Horigan
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | | | - Brenda Rajanayagam
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Aidan Dryden
- APHA, Worcester CSC, County Hall, Spetchley Road, Worcester, WR5 2NP, UK
| | - Hugh Simmons
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Timm Konold
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Carmen Marco
- APHA Advice Services, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Judith Charnley
- APHA Foundry House, Carleton Rd, Skipton North Yorks, BD23 2BE, UK
| | - John Spiropoulos
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Claire Cassar
- Laboratory Services, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Amie Adkin
- Food Standards Agency, Clive House, 70 Petty France, London, SW1H 9EX, UK
| |
Collapse
|
3
|
Nag R, Auer A, Markey BK, Whyte P, Nolan S, O'Flaherty V, Russell L, Bolton D, Fenton O, Richards K, Cummins E. Anaerobic digestion of agricultural manure and biomass - Critical indicators of risk and knowledge gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:460-479. [PMID: 31299578 DOI: 10.1016/j.scitotenv.2019.06.512] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) has been identified as a potential green technology to treat food and municipal waste, agricultural residues, including farmyard manure and slurry (FYM&S), to produce biogas. FYM&S and digestate can act as soil conditioners and provide valuable nutrients to plants; however, it may also contain harmful pathogens. This study looks at the critical indicators in determining the microbial inactivation potential of AD and the possible implications for human and environmental health of spreading the resulting digestate on agricultural land. In addition, available strategies for risk assessment in the context of EU and Irish legislation are assessed. Storage time and process parameters (including temperature, pH, organic loading rate, hydraulic retention time), feedstock recipe (carbon-nitrogen ratio) to the AD plant (both mesophilic and thermophilic) were all assessed to significantly influence pathogen inactivation. However, complete inactivation of all pathogens is unlikely. There are limited studies evaluating risks from FYM&S as a feedstock in AD and the spreading of resulting digestate. The lack of process standardisation and varying feedstocks between AD farms means risk must be evaluated on a case by case basis and calls for a more unified risk assessment methodology. In addition, there is a need for the enhancement of AD farm-based modelling techniques and datasets to help in advancing knowledge in this area.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Agathe Auer
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Bryan K Markey
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Sciences, Galway, Ireland
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences, Galway, Ireland.
| | - Lauren Russell
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Declan Bolton
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Owen Fenton
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl Richards
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Marín-Moreno A, Espinosa JC, Fernández-Borges N, Píquer J, Girones R, Andreoletti O, Torres JM. An assessment of the long-term persistence of prion infectivity in aquatic environments. ENVIRONMENTAL RESEARCH 2016; 151:587-594. [PMID: 27591838 DOI: 10.1016/j.envres.2016.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrPC transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by three and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrPRes persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain
| | - Juan-Carlos Espinosa
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain
| | - Natalia Fernández-Borges
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain
| | - Juan Píquer
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain
| | - Rosina Girones
- Department of Microbiology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Olivier Andreoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan-María Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain.
| |
Collapse
|