1
|
Liu L, Chen X, Hu S, Zhan Q, Peng W. Genetic diversity and distribution of rhizobia associated with soybean in red soil in Hunan Province. Arch Microbiol 2021; 203:1971-1980. [PMID: 33394081 DOI: 10.1007/s00203-020-02120-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
To explore the genetic diversity and distribution of rhizobia in the rhizosphere of soybean grown in red soil, we have collected 21 soil samples from soybean fields across seven counties in Hunan province, China. MiSeq sequencing of rpoB gene was used to determine the intra-species diversity of rhizobia existing in soybean rhizospheres. Soil chemical properties were determined by routine methods. The Principal Coordinates Analysis (PCoA) plot indicated a clear biogeographical pattern characterizing the soybean rhizosphere across different sites. The Mantel test demonstrated that biogeographical pattern was significantly correlated with the geographical distance (Mantel statistic R 0.385, p < 0.001). There were obvious differences in the rhizobial communities among northeastern eco-region, southeastern eco-region and western eco-region. In general, Bradyrhizobium diazoefficiens was the most abundant rhizobial species in the soybean rhizosphere. At an intermediate (10-400 km) spatial scale, the biogeographical pattern of rhizobial communities in soybean rhizosphere is associated with both soil properties and geographical distance. Redundancy analysis (RDA) showed that total potassium (TK), available potassium (AK), soil organic carbon (SOC), and available nitrogen (AN) were the main factors that influenced the α-diversity of rhizobial communities. Canonical correspondence analysis (CCA) showed that pH and exchangeable Ca and Mg had the greatest influence on the β-diversity of the rhizobial communities in the soybean rhizosphere. These findings characterize the distribution pattern and its influencing factors of soybean rhizobia in rhizosphere in Hunan province, which may be helpful in selecting suitable strains or species as inoculants for soybeans in red soil regions.
Collapse
Affiliation(s)
- Lu Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Xi Chen
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Shujuan Hu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
- Longping Branch of Graduate School, Hunan University, Changsha, People's Republic of China
| | - Qingcai Zhan
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Weizheng Peng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Gitonga NM, Njeru EM, Cheruiyot R, Maingi JM. Genetic and Morphological Diversity of Indigenous Bradyrhizobium Nodulating Soybean in Organic and Conventional Family Farming Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.606618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organic farming systems are gaining popularity as agronomically and environmentally sound soil management strategies with potential to enhance soil microbial diversity and fertility, environmental quality and sustainable crop production. This work aimed at understanding the effect of organic and conventional farming on the diversity of soybean nodulating bradyrhizobia species. Field trapping of indigenous soybean Bradyrhizobium was done by planting promiscuous soybeans varieties SB16 and SC squire as well as non-promiscuous Gazelle in three organic and three conventional farms in Tharaka-Nithi County of Kenya. After 45 days of growth, 108 nodule isolates were obtained from the soybean nodules and placed into 13 groups based on their morphological characteristics. Genetic diversity was done by polymerase chain reaction (PCR) targeting 16S rDNA gene using universal primers P5-R and P3-F and sequencing was carried out using the same primer. High morphological and genetic diversity of the nodule isolates was observed in organic farms as opposed to conventional farms. There was little or no genetic differentiation between the nodule isolates from the different farms with the highest molecular variation (91.12%) being partitioned within populations as opposed to among populations (8.88%). All the isolates were identified as bradyrhizobia with close evolutionary ties with Bradyrhizobium japonicum and Bradyrhizobium yuanminense. Organic farming systems favor the proliferation of bradyrhizobia species and therefore a suitable environmentally friendly alternative for enhancing soybean production.
Collapse
|
3
|
Bashandy SR, Abd‐Alla MH, Bagy MMK. Biological Nitrogen Fixation and Biofertilizers as Ideal Potential Solutions for Sustainable Agriculture. INTEGRATING GREEN CHEMISTRY AND SUSTAINABLE ENGINEERING 2019:343-396. [DOI: 10.1002/9781119509868.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Rodrigues AA, Araújo MVF, Soares RS, Oliveira BFRDE, Ribeiro IDA, Sibov ST, Vieira JDG. Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. AN ACAD BRAS CIENC 2018; 90:3813-3829. [PMID: 30379271 DOI: 10.1590/0001-3765201820180319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022] Open
Abstract
Microorganisms associated with organic management are essential in nutrient transformation and release for plant use. The present study aimed to isolate, identify and characterize plant growth promoting diazotrophic rhizobacteria associated with sugarcane under organic management. Rhizospheres of organic sugarcane varieties IAC 911099 and CTC4 were sampled and inoculated onto nitrogen free NFb and Burk media. The isolated microorganisms were screened in vitro concerning their ability to produce plant growth promoting factors. Eighty-one bacteria were isolated; 45.6% were positive for the nifH gene and produced at least one of the evaluated plant growth promotion factors. The production of indole-3-acetic acid was observed in 46% of the isolates, while phosphate solubilization was observed in 86.5%. No isolates were hydrogen cyanide producers, while 81% were ammonia producers, 19% produced cellulases and 2.7%, chitinases. Microorganisms belonging to the Burkholderia genus were able to inhibit Fusarium moniliforme growth in vitro. Plant growth promoting microorganisms associated with organic sugarcane, especially belonging to Burkholderia, Sphingobium, Rhizobium and Enterobacter genera, can be environmentally friendly alternatives to improve sugarcane production.
Collapse
Affiliation(s)
- Ariana A Rodrigues
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Marcus Vinícius F Araújo
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Renan S Soares
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Bruno F R DE Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 373, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Igor D A Ribeiro
- Centro de Microbiologia Agrícola, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91540-000 Porto Alegre, RS, Brazil
| | - Sergio T Sibov
- Laboratório de Cultura de Tecidos, Departamento de Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Av. Esperança, s/n, 74690-900 Goiânia, GO, Brazil
| | - José Daniel G Vieira
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| |
Collapse
|
5
|
Yang SH, Chen WH, Wang ET, Chen WF, Yan J, Han XZ, Tian CF, Sui XH, Singh RP, Jiang GM, Chen WX. Rhizobial biogeography and inoculation application to soybean in four regions across China. J Appl Microbiol 2018; 125:853-866. [PMID: 29719942 DOI: 10.1111/jam.13897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/31/2018] [Accepted: 04/23/2018] [Indexed: 01/22/2023]
Abstract
AIMS The aim of the study was to survey rhizobial biogeography and to inoculate soybean with selected rhizobia in China to enhance symbiotic nitrogen fixation (SNF). METHODS AND RESULTS Biogeography, genetic diversity and phylogeny of soybean rhizobia were surveyed. Inocula were prepared and applied to soybean. Results showed that Bradyrhizobium elkanii and Ensifer fredii were widely distributed in acid and alkaline soils respectively. Available iron was detected as the first determinant for distribution of the two rhizobia and the soybean varieties did not greatly affect the rhizobial compatibility. Geographical latitude and precipitation in June were the main geographical and climatic factors affecting the rhizobial distribution. Inoculation with selected rhizobia increased the nodule number, fresh weight, occupation ratio, seed protein content and soybean yields. CONCLUSIONS Selection and application of effective soybean rhizobia across China according to biogeography were clarified to promote the SNF, thereby improving soybean yield. SIGNIFICANCE AND IMPACT OF THE STUDY Rhizobial diversity and biogeography were evaluated systematically in six sites across China. Available iron and soil pH are found to be the most important determinants for the distribution of soybean rhizobia. Inoculation to soybean enhances SNF, positively correlating to the increase in soybean yield and seed protein content.
Collapse
Affiliation(s)
- S H Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - W H Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - E T Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, Distrito Federal, México
| | - W F Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - J Yan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang Province, China
| | - X Z Han
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang Province, China
| | - C F Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - X H Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - R P Singh
- Microbial Genomics Laboratory, National Bureau of Agriculturally Important Micro-organisms, Maunath Bhanjan, Uttar Pradesh, India
| | - G M Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - W X Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Abou-Shanab RAI, Wongphatcharachai M, Sheaffer CC, Orf JC, Sadowsky MJ. Competition between introduced Bradyrhizobium japonicum strains and indigenous bradyrhizobia in Minnesota organic farming systems. Symbiosis 2017. [DOI: 10.1007/s13199-017-0505-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Wongphatcharachai M, Wang P, Staley C, Chun CL, Ferguson JA, Moncada KM, Sheaffer CC, Sadowsky MJ. Site-specific distribution and competitive ability of indigenous bean-nodulating rhizobia isolated from organic fields in Minnesota. J Biotechnol 2015; 214:158-68. [DOI: 10.1016/j.jbiotec.2015.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022]
|