1
|
Murvai KP, Rácz HV, Horváth E, Németh B, Imre A, Pereira KNO, Antunovics Z, Peles F, Sipos P, Béri B, Pusztahelyi T, Pócsi I, Pfliegler WP. The bacterial and yeast microbiota in livestock forages in Hungary. BMC Microbiol 2024; 24:340. [PMID: 39266945 PMCID: PMC11391633 DOI: 10.1186/s12866-024-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Along bacteria, yeasts are common in forages and forage fermentations as spoilage microbes or as additives, yet few studies exist with species-level data on these fungi's occurrence in feedstuff. Active dry yeast and other yeast-based products are also common feed additives in animal husbandry. Here, we aimed to characterize both fermented and non-fermented milking cow feedstuff samples from Hungary to assess their microbial diversity in the first such study from Central Europe. RESULTS We applied long-read bacterial metabarcoding to 10 fermented and 25 non-fermented types of samples to assess bacterial communities and their characteristics, surveyed culturable mold and yeast abundance, and identified culturable yeast species. Fermented forages showed the abundance of Aerococcaceae, Bacillaceae, Brucellaceae, Lactobacillaceae, Staphylococcaceae, and Thermoactinomycetaceae, non-fermented ones had Cyanothecaceae, Enterobacteriaceae, Erwiniaceae, Gomontiellaceae, Oxalobacteraceae, Rhodobiaceae, Rickettsiaceae, and Staphylococcaceae. Abundances of bacterial families showed mostly weak correlation with yeast CFU numbers, only Microcoleaceae (positive) and Enterococcaceae and Alcaligenaceae (negative correlation) showed moderate correlation. We identified 14 yeast species, most commonly Diutina rugosa, Pichia fermentans, P. kudriavzevii, and Wickerhahomyces anomalus. We recorded S. cerevisiae isolates only from animal feed mixes with added active dry yeast, while the species was completely absent from fermented forages. The S. cerevisiae isolates showed high genetic uniformity. CONCLUSION Our results show that both fermented and non-fermented forages harbor diverse bacterial microbiota, with higher alpha diversity in the latter. The bacterial microbiome had an overall weak correlation with yeast abundance, but yeasts were present in the majority of the samples, including four new records for forages as a habitat for yeasts. Yeasts in forages mostly represented common species including opportunistic pathogens, along with a single strain of Saccharomyces used as a feed mix additive.
Collapse
Affiliation(s)
- Katalin Pappné Murvai
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary
- Doctoral School of Nutrition and Food Sciences, Faculty of Medicine, University of Debrecen, Egyetem tér 1. / Böszörményi út 138, Debrecen, H4032, Hungary
| | - Hanna Viktória Rácz
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary
- Doctoral School of Nutrition and Food Sciences, Faculty of Medicine, University of Debrecen, Egyetem tér 1. / Böszörményi út 138, Debrecen, H4032, Hungary
| | - Enikő Horváth
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary
| | - Bálint Németh
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary
- Doctoral School of Nutrition and Food Sciences, Faculty of Medicine, University of Debrecen, Egyetem tér 1. / Böszörményi út 138, Debrecen, H4032, Hungary
| | - Alexandra Imre
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary
| | - Kadmiel Naliel Oliveira Pereira
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary
| | - Zsuzsa Antunovics
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary
| | - Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138., Debrecen, H4032, Hungary
| | - Péter Sipos
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138., Debrecen, H4032, Hungary
| | - Béla Béri
- Department of Animal Husbandry, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138., Debrecen, H4032, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138., Debrecen, H4032, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary
- HUN-REN-UD Fungal Stress Biology Research Group, Egyetem tér 1., Debrecen, H4032, Hungary
| | - Walter P Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., Debrecen, H4032, Hungary.
- HUN-REN-UD Fungal Stress Biology Research Group, Egyetem tér 1., Debrecen, H4032, Hungary.
| |
Collapse
|
2
|
Sadhasivam S, Marshi R, Barda O, Zakin V, Britzi M, Gamliel A, Sionov E. Ensiling process and pomegranate peel extract as a natural additive in potential prevention of fungal and mycotoxin contamination in silage. Toxicol Rep 2022; 9:1557-1565. [PMID: 35936058 PMCID: PMC9347003 DOI: 10.1016/j.toxrep.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
A study was conducted on six animal feed centers in Israel where fungal and mycotoxin presence was examined in maize and wheat silages. Fumonisin mycotoxins FB1 and FB2 were present in every maize silage sample analyzed. Interestingly, no correlation was found between the occurrence of specific mycotoxins and the presence of the fungal species that might produce them in maize and wheat silages. We further investigated the effect of pomegranate peel extract (PPE) on Fusarium infection and fumonisin biosynthesis in laboratory-prepared maize silage. PPE had an inhibitory effect on FB1 and FB2 biosynthesis by Fusarium proliferatum, which resulted in up to 90 % reduction of fumonisin production in silage samples compared to untreated controls. This finding was supported by qRT-PCR analysis, showing downregulation of key genes involved in the fumonisin-biosynthesis pathway under PPE treatment. Our results present promising new options for the use of natural compounds that may help reduce fungal and mycotoxin contamination in agricultural foodstuff, and potentially replace traditionally used synthetic chemicals. The mycotoxins fumonisin B1 and B2 were detected in all analyzed maize silage samples. No correlation was found between mycotoxins and their fungal sources in silages. Treatment with PPE demonstrated strong anti-mycotoxigenic activity in silages samples.
Collapse
|
3
|
Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int J Food Microbiol 2022; 365:109556. [DOI: 10.1016/j.ijfoodmicro.2022.109556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 11/22/2022]
|
4
|
Prognostic capacity assessment of a multiparameter risk score for aerobic stability of maize silage undergoing heterofermentative inoculation (Lactobacillus buchneri) in variable ensiling conditions. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Vandicke J, De Visschere K, Ameye M, Croubels S, De Saeger S, Audenaert K, Haesaert G. Multi-Mycotoxin Contamination of Maize Silages in Flanders, Belgium: Monitoring Mycotoxin Levels from Seed to Feed. Toxins (Basel) 2021; 13:202. [PMID: 33799633 PMCID: PMC7999811 DOI: 10.3390/toxins13030202] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Maize silage, which in Europe is the main feed for dairy cattle in winter, can be contaminated by mycotoxins. Mycotoxigenic Fusarium spp. originating from field infections may survive in badly sealed silages or re-infect at the cutting edge during feed-out. In this way, mycotoxins produced in the field may persist during the silage process. In addition, typical silage fungi such as Penicillium spp. and Aspergillus spp. survive in silage conditions and produce mycotoxins. In this research, 56 maize silages in Flanders were sampled over the course of three years (2016-2018). The concentration of 22 different mycotoxins was investigated using a multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and the presence of DNA of three Fusarium spp. (F. graminearum, F. culmorum and F. verticillioides) was analyzed in a selection of these samples using quantitative polymerase chain reaction (qPCR). Every maize silage contained at least two different mycotoxins. Nivalenol (NIV) and deoxynivalenol (DON) were the most prevalent (both in 97.7% of maize silages), followed by ENN B (88.7%). Concentrations often exceeded the EU recommendations for DON and zearalenone (ZEN), especially in 2017 (21.3% and 27.7% of the maize silages, respectively). No correlations were found between fungal DNA and mycotoxin concentrations. Furthermore, by ensiling maize with a known mycotoxin load in a net bag, the mycotoxin contamination could be monitored from seed to feed. Analysis of these net bag samples revealed that the average concentration of all detected mycotoxins decreased after fermentation. We hypothesize that mycotoxins are eluted, degraded, or adsorbed during fermentation, but certain badly preserved silages are prone to additional mycotoxin production during the stable phase due to oxygen ingression, leading to extremely high toxin levels.
Collapse
Affiliation(s)
- Jonas Vandicke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (J.V.); (K.A.)
| | - Katrien De Visschere
- Biosciences and Food Sciences Department, Faculty Science and Technology, University College Ghent, Research Station HoGent-UGent, Diepestraat 1, 9820 Bottelare, Belgium;
| | - Maarten Ameye
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (J.V.); (K.A.)
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Sarah De Saeger
- Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (J.V.); (K.A.)
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium; (J.V.); (K.A.)
| |
Collapse
|
6
|
Wang Y, Zhou W, Wang C, Yang F, Chen X, Zhang Q. Effect on the ensilage performance and microbial community of adding Neolamarckia cadamba leaves to corn stalks. Microb Biotechnol 2020; 13:1502-1514. [PMID: 32449595 PMCID: PMC7415371 DOI: 10.1111/1751-7915.13588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
To comprehensively evaluate the fermentation performance and microbial community of corn stalks (CS) silage mixed with Neolamarckia cadamba leaves (NCL), CS were ensiled with four levels (0%, 10%, 30% and 50% of fresh weight) of NCL for 1, 7, 14, 30, 60 days in two trials. The results showed that all silages were well preserved with low pH (3.60-3.88) and ammonia nitrogen content (0.08-0.19% DM). The silage samples with NCL displayed lower (P < 0.05) acetic acid, propionic acid and ammonia nitrogen contents and lactic acid bacteria population during ensiling than control silages (100% CS). The addition of NCL also influenced the distribution of bacterial and fungal communities. Fungal diversity (Shannon's indices were 5.15-5.48 and 2.85-4.27 in trial 1 and trial 2 respectively) increased while the relative abundances of Lactobacillus, Leuconostocs, Acetobacter and two moulds (Aspergillus and Fusarium) decreased after added NCL. In summary, mixing NCL is a promising effective approach to preserve protein of CS silage and inhibit the growth of undesirable bacteria and mould, thus to improve the forage quality to some extent.
Collapse
Affiliation(s)
- Yi Wang
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Wei Zhou
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Cheng Wang
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Fuyu Yang
- College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoyang Chen
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Qing Zhang
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
7
|
Feasibility of Utilizing Biodegradable Plastic Film to Cover Corn Silage under Farm Conditions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The degree of anaerobiosis and its maintenance over the conservation period are key factors in obtaining high quality silage. There is currently a demand to replace petroleum-based plastic films with biodegradable materials with suitable mechanical properties. This work has evaluated, under outdoor conditions, the shelf life of a Mater-Bi® biodegradable plastic (MB) film and its effects on the fermentative characteristics, microbial counts and aerobic stability of corn silage, and compared it with commercially available polyethylene (PE) and high oxygen barrier (OB) films. Corn (409 g DM/kg) was ensiled in 30 drive-over piles covered with MB, PE or OB films. The piles were opened after 21, 85, 133, 195 and 230 d of conservation. The effect of the film was assessed in silage sample close to (CF) and far (FF) from the film. The OB film allowed high quality corn silages to be obtained with similar pH, lactic acid, yeast and mold counts for CF and FF during the entire 230 d of conservation. The PE film showed similar values for the FF and CF areas for the first conservation period (until 133 d). The MB film showed a similar silage quality to OB until day 85, after which it underwent biodegradation and lost its ability to preserve silage in a good state.
Collapse
|
8
|
Spadaro D, Matic S, Prencipe S, Ferrero F, Borreani G, Gisi U, Gullino ML. Aspergillus fumigatus population dynamics and sensitivity to demethylation inhibitor fungicides in whole-crop corn, high moisture corn and wet grain corn silages. PEST MANAGEMENT SCIENCE 2020; 76:685-694. [PMID: 31347787 DOI: 10.1002/ps.5566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aspergillus fumigatus, the causal agent of aspergillosis in humans, is commonly present as a saprophyte in various organic substrates, such as spoiled silages. Aspergillosis is generally combated with demethylation inhibitor (DMI) fungicides, but the recent appearance of resistant medical and environmental strains made current treatment strategies less reliable. The goal of this study was to determine the evolution of A. fumigatus populations during the ensiling process of whole-crop corn, high moisture corn and wet grain corn, and to monitor the sensitivity of isolates from treated and untreated fields to one medical and one agricultural DMI fungicide. RESULTS A. fumigatus was isolated from fresh forage at harvest at rather low concentrations (102 cfu g-1 ). The low frequency lingered during the silage process (at 60 and 160 days), whereas it significantly increased during air exposure (at 7 and 14 days of air exposure). Field treatment of corn with a mixture of prothioconazole and tebuconazole did not affect the sensitivity of A. fumigatus isolates. One of 29 isolates from the untreated plot was resistant to voriconazole. A unique amino acid substitution (E427K) was detected in the cyp51A gene of 10 of 12 sequenced isolates, but was not associated with DMI resistance. CONCLUSION A. fumigatus significantly increased during aerobic deterioration of ensilaged corn after silo opening, compared with the low presence in fresh corn and during ensiling. Field treatment of corn with DMI fungicides did not affect the sensitivity of A. fumigatus isolates collected from fresh and ensiled corn. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Davide Spadaro
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
| | - Slavica Matic
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, Italy
| | - Simona Prencipe
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
| | - Francesco Ferrero
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
| | - Giorgio Borreani
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
| | - Ulrich Gisi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, Italy
| | - Maria Lodovica Gullino
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
| |
Collapse
|
9
|
Magnoli AP, Poloni VL, Cavaglieri L. Impact of mycotoxin contamination in the animal feed industry. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Xu S, Yang J, Qi M, Smiley B, Rutherford W, Wang Y, McAllister TA. Impact of Saccharomyces cerevisiae and Lactobacillus buchneri on microbial communities during ensiling and aerobic spoilage of corn silage1. J Anim Sci 2019; 97:1273-1285. [PMID: 30715344 DOI: 10.1093/jas/skz021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to assess the impact of Saccharomyces cerevisiae in combination with Lactobacillus buchneri on the fermentation characteristics, aerobic stability, nutritive value, and microbial communities of corn silage. Whole crop corn (39% DM) was either uninoculated (Control) or inoculated with S. cerevisiae and L. buchneri at the following concentrations: S. cerevisiae 104 cfu/g fresh forage (S4), S. cerevisiae 105 cfu/g (S5), S. cerevisiae 104 cfu/g + L. buchneri 105 cfu/g (S4L5), and S. cerevisiae 105 cfu/g + L. buchneri 104 cfu/g (S5L4), and ensiled in mini silos for 118 d, followed by 7 d of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages. Saccharomyces cerevisiae, L. buchneri, and total yeast, fungal, and bacterial communities in silage were estimated using quantitative PCR. Composition of bacterial and fungal communities during ensiling and aerobic exposure was measured using 16S rDNA and ITS sequencing, respectively. In the first 7 d of ensiling, the concentration of lactic acid rapidly increased (P < 0.01) in all silages, with the pH declining to 4.0 (P < 0.001) and thereafter remaining stable (P = 0.23). Although S4L5 contained a higher (P = 0.03) concentration of acetic acid than Control, other fermentation characteristics were did not differ among terminal silages. Inoculation with S. cerevisiae had no detrimental effect on the aerobic stability of silage, whereas L. buchneri did not prevent spoilage as the pH across all silages averaged 8.0 after 7 d of aerobic exposure. Total yeast (P = 0.42), bacterial (P = 0.13), and fungal (P = 0.89) communities were not altered by the inoculants after ensiling or aerobic exposure. Sequencing identified temporal shifts of bacterial and fungal communities during ensiling and aerobic exposure. Concentrations of S. cerevisiae and L. buchneri in all inoculated silages remained greater (P < 0.01) than Control after ensiling, with numbers of S. cerevisiae increasing after 7 d of aerobic exposure. Bacterial communities in silages inoculated with S. cerevisiae and L. buchneri clustered separately from other silages, an observation that was not apparent for fungal communities. Our findings suggest that aerobic exposure could potentially increase the abundance of S. cerevisiae with probiotic properties in corn silage just prior to feeding.
Collapse
Affiliation(s)
- Shanwei Xu
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Jinli Yang
- Department of animal science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Meng Qi
- DuPont Pioneer, Forage Additive Research, Johnston, IA
| | - Brenda Smiley
- DuPont Pioneer, Forage Additive Research, Johnston, IA
| | | | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
11
|
Ferrero F, Prencipe S, Spadaro D, Gullino ML, Cavallarin L, Piano S, Tabacco E, Borreani G. Increase in aflatoxins due to Aspergillus section Flavi multiplication during the aerobic deterioration of corn silage treated with different bacteria inocula. J Dairy Sci 2019; 102:1176-1193. [DOI: 10.3168/jds.2018-15468] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
|
12
|
Nath CD, Neres MA, Scheidt KC, dos Santos Bersot L, Sunahara SMM, Sarto JRW, Stangarlin JR, Gomes SD, Sereno MJ, Perin AP. Characterization of Tifton 85 bermudagrass haylage with different layers of polyethylene film and storage time. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1197-1204. [PMID: 29514438 PMCID: PMC6043440 DOI: 10.5713/ajas.17.0604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/30/2017] [Accepted: 02/08/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective was to characterize the fermentative and microbiological profile of Tifton 85 bermudagrass haylage with different layers of polyethylene film and storage time. METHODS The experimental design consisted of a randomized block design with four and six wrapping layers (100 and 150 microns in total. respectively) allocated in the main plots, through repeated measures analysis (30, 60, and 90 days of storage) with four replicates. RESULTS The storage time and number of wrapping layers did not show changes in the population of Clostridium and lactic acid bacteria. A decrease was observed in the enterobacteria population with an increase in the storage period in the two wrapping layers studied. Upon opening of the haylage at 30 days, the population of Bacillus was lower in haylages made with six layers of wrapping (3.63 log colony forming units/g). No growth of Listeria sp. or Salmonella sp. was observed during the experimental period. The fungal genera with a greater occurrence were Penicillium sp. and Fusarium sp. The following mycotoxins were not detected: ochratoxin A, fumonisins, and zearalenone. Relative to the organic butyric, propionic, and acetic acids, the haylages presented a low concentration of lactic acid; this may have prevented a drop in the pH, which was high when the silos were opened (5.4). The levels of ammoniacal nitrogen and soluble carbohydrates presented no variation among the number of wrapping layers, with an overall average of 35.55 and 38.04 g/kg. CONCLUSION Tifton 85 bermudagrass haylage wrapped with four and six layers presented adequate fermentation and microbiological characteristics in the evaluated periods.
Collapse
Affiliation(s)
- Caroline Daiane Nath
- Department of Agricultural Science, State University of West Paraná, Marechal Cândido Rondon, PR 85960-000,
Brazil
| | - Marcela Abbado Neres
- Department of Agricultural Science, State University of West Paraná, Marechal Cândido Rondon, PR 85960-000,
Brazil
| | - Kácia Carine Scheidt
- Department of Agricultural Science, State University of Maringá, Maringá, PR 87020-900,
Brazil
| | | | | | | | - José Renato Stangarlin
- Department of Agricultural Science, State University of West Paraná, Marechal Cândido Rondon, PR 85960-000,
Brazil
| | - Simone Damasceno Gomes
- Department of Agricultural Engineering, State University of West Paraná, Cascavel, PR 85819-110,
Brazil
| | - Mallu Jagnow Sereno
- Department of Veterinary Science, Federal University of Palotina, Palotina, PR 85950-000,
Brazil
| | - Ana Paula Perin
- Department of Veterinary Science, Federal University of Palotina, Palotina, PR 85950-000,
Brazil
| |
Collapse
|
13
|
Pugliese M, Matić S, Prethi S, Gisi U, Gullino ML. Molecular characterization and sensitivity to demethylation inhibitor fungicides of Aspergillus fumigatus from orange-based compost. PLoS One 2018; 13:e0200569. [PMID: 30001414 PMCID: PMC6042770 DOI: 10.1371/journal.pone.0200569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/28/2018] [Indexed: 01/05/2023] Open
Abstract
Aspergillus fumigatus, the causal agent of human aspergilloses, is known to be non-pathogenic in plants. It is present as saprophyte in different types of organic matter and develops rapidly during the high-temperature phase of the composting process. Aspergilloses are treated with demethylation inhibitor (DMI) fungicides and resistant isolates have been recently reported. The present study aims to estimate the abundance, genetic diversity and DMI sensitivity of A. fumigatus during the composting process of orange fruits. Composting of orange fruits resulted in a 100-fold increase in A. fumigatus frequency already after 1 week, demonstrating that the degradation of orange fruits favoured the growth of A. fumigatus in compost. Most of A. fumigatus isolates belonged to mating type 2, including those initially isolated from the orange peel, whereas mating type 1 evolved towards the end of the composting process. None of the A. fumigatus isolates expressed simultaneously both mating types. The 52 investigated isolates exhibited moderate SSR polymorphisms by formation of one major (47 isolates) and one minor cluster (5 isolates). The latter included mating type 1 isolates from the last sampling and the DMI-resistant reference strains. Only few isolates showed cyp51A polymorphisms but were sensitive to DMIs as all the other isolates. None of the A. fumigatus isolates owned any of the mutations associated with DMI resistance. This study documents a high reproduction rate of A. fumigatus during the composting process of orange fruits, requesting specific safety precautions in compost handling. Furthermore, azole residue concentrations in orange-based compost were not sufficient to select A. fumigatus resistant genotypes.
Collapse
Affiliation(s)
- Massimo Pugliese
- AGROINNOVA–Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Largo P. Braccini 2, Grugliasco, Turin, Italy
- Agricultural, Forestry and Food Sciences Department (DISAFA), Turin University, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Slavica Matić
- AGROINNOVA–Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Sanila Prethi
- Alexander Technological Institute of Thessaloniki, Sindos, Thessaloniki, Greece
| | - Ulrich Gisi
- AGROINNOVA–Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Maria Lodovica Gullino
- AGROINNOVA–Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Largo P. Braccini 2, Grugliasco, Turin, Italy
- Agricultural, Forestry and Food Sciences Department (DISAFA), Turin University, Largo P. Braccini 2, Grugliasco, Turin, Italy
| |
Collapse
|
14
|
Borreani G, Tabacco E, Schmidt R, Holmes B, Muck R. Silage review: Factors affecting dry matter and quality losses in silages. J Dairy Sci 2018; 101:3952-3979. [DOI: 10.3168/jds.2017-13837] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022]
|
15
|
Keshri J, Chen Y, Pinto R, Kroupitski Y, Weinberg ZG, Sela S. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8903-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Santoro K, Matić S, Gisi U, Spadaro D, Pugliese M, Gullino ML. Abundance, genetic diversity and sensitivity to demethylation inhibitor fungicides of Aspergillus fumigatus isolates from organic substrates with special emphasis on compost. PEST MANAGEMENT SCIENCE 2017; 73:2481-2494. [PMID: 28618166 DOI: 10.1002/ps.4642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Aspergillus fumigatus is a widespread fungus that colonizes dead organic substrates but it can also cause fatal human diseases. Aspergilloses are treated with demethylation inhibitor (DMI) fungicides; however, resistant isolates appeared recently in the medical and also environmental area. The present study aims at molecular characterizing and quantifying A. fumigatus in major environmental habitats and determining its sensitivity to medical and agricultural DMI fungicides. RESULTS A. fumigatus was isolated only rarely from soil and meadow/forest organic matter but high concentrations (103 to 107 cfu/g) were detected in substrates subjected to elevated temperatures, such as compost and silage. High genetic diversity of A. fumigatus from compost was found based on SSR markers, distinguishing among fungal isolates even when coming from the same substrate sample, while subclustering was observed based on mutations in cyp51A gene. Several cyp51A amino acid substitutions were found in 15 isolates, although all isolates were fully sensitive to the tested DMI fungicides, with exception of one isolate in combination with one fungicide. CONCLUSION This study suggests that the tested A. fumigatus isolates collected in Italy, Spain and Hungary from the fungus' major living habitats (compost) and commercial growing substrates are not potential carriers for DMI resistance in the environment. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karin Santoro
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, (TO), Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, (TO), Italy
| | - Slavica Matić
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, (TO), Italy
| | - Ulrich Gisi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, (TO), Italy
| | - Davide Spadaro
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, (TO), Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, (TO), Italy
| | - Massimo Pugliese
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, (TO), Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, (TO), Italy
- AgriNewTech srl, Torino, (TO), Italy
| | - Maria L Gullino
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Università di Torino, Grugliasco, (TO), Italy
- Dept. Agricultural, Forestry and Food Sciences (DISAFA), Università di Torino, Grugliasco, (TO), Italy
| |
Collapse
|
17
|
Guerrini S, Borreani G, Voojis H. Biodegradable Materials in Agriculture: Case Histories and Perspectives. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54130-2_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Redefining Agricultural Residues as Bioenergy Feedstocks. MATERIALS 2016; 9:ma9080635. [PMID: 28773750 PMCID: PMC5509081 DOI: 10.3390/ma9080635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022]
Abstract
The use of plant biomass is a sustainable alternative to the reduction of CO₂ emissions. Agricultural residues are interesting bioenergy feedstocks because they do not compete with food and add extra value to the crop, which might help to manage these residues in many regions. Breeding crops for dual production of food and bioenergy has been reported previously, but the ideal plant features are different when lignocellulosic residues are burnt for heat or electricity, or fermented for biofuel production. Stover moisture is one of the most important traits in the management of agricultural waste for bioenergy production which can be modified by genetic improvement. A delayed leaf senescence or the stay-green characteristic contributes to higher grain and biomass yield in standard, low nutrient, and drought-prone environments. In addition, the stay-green trait could be favorable for the development of dual purpose varieties because this trait could be associated with a reduction in biomass losses and lodging. On the other hand, the stay-green trait could be detrimental for the management of agricultural waste if it is associated with higher stover moisture at harvest, although this hypothesis has been insufficiently tested. In this paper, a review of traits relevant to the development of dual purpose varieties is presented with particular emphasis on stover moisture and stay-green, because less attention has been paid to these important traits in the literature. The possibility of developing new varieties for combined production is discussed from a breeding perspective.
Collapse
|