1
|
Rodríguez-Barreto D, Sanz-González JC, Martín MV, Arrieta JM, Almansa E. Sex-specific bacterial microbiome variation in octopus vulgaris skin. Front Microbiol 2024; 14:1233661. [PMID: 38318128 PMCID: PMC10842966 DOI: 10.3389/fmicb.2023.1233661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
Growing knowledge of the host-microbiota of vertebrates has shown the prevalence of sex-specific differences in the microbiome. However, there are virtually no studies assessing sex-associated variation in the microbiome of cephalopods. Here we assess sex-specific variation in the common octopus (Octopus vulgaris) skin microbiome using amplicon sequencing targeting the V4 hypervariable region of prokaryote 16S rRNA genes. Skin and mantle-associated mucus was collected from wild adult individuals of common Octopus (Octopus vulgaris) (9 males and 7 females of similar size). There were no significant differences in the alpha diversity of microbial communities associated with skin or mantle mucosa between sexes. However, our results clearly indicate that adult octopus males and females have a distinct microbial community composition in both skin and mantle associated mucus communities, with female microbiome being dominated by Firmicutes (48.1%), while that of males contained a majority of Proteobacteria (60.5%), with Firmicutes representing only 3.30%, not finding significant differentiation in the microbial communities between the tissues explored. The dominance of different taxa in the skin of O. vulgaris females and males (e.g., Mycoplasmatales and Lactococcus in females and Rhizobiales and Rhodobacteriales in males) suggests a sex-specific symbiosis in which those microbes benefit from easy access to distinct substrates present in female and male skin, respectively. Given the lack of differences in size between specimens of both sexes in this study, we hypothesize differences in hormone profile, as well as behavioral or ecological differences between sexes in the wild, as the main drivers of microbiome differentiation between sexes. Most knowledge of cephalopod microbiota is limited to the digestive tract and the reproductive system. However, cephalopod skin is an organ with a plethora of functions. This is a first attempt to characterize cephalopod skin microbiota and determine sex influence on it.
Collapse
Affiliation(s)
- Deiene Rodríguez-Barreto
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
- University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Juan Carlos Sanz-González
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
| | - M. Virginia Martín
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
| | - Jesús M. Arrieta
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
| | - Eduardo Almansa
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
| |
Collapse
|
2
|
Chondroitin Sulfate and Its Derivatives: A Review of Microbial and Other Production Methods. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chondroitin sulfate (CS) is widely used across the world as a nutraceutical and pharmaceutical. Its high demand and potential limitations in current methods of extraction call for an alternative method of production. This review highlights glycosaminoglycan’s structure, its medical significance, animal extraction source, and the disadvantages of the extraction process. We cover alternative production strategies for CS and its precursor, chondroitin. We highlight chemical synthesis, chemoenzymatic synthesis, and extensively discuss how strains have been successfully metabolically engineered to synthesize chondroitin and chondroitin sulfate. We present microbial engineering as the best option for modern chondroitin and CS production. We also explore the biosynthetic pathway for chondroitin production in multiple microbes such as Escherichia coli, Bacillus subtilis, and Corynebacterium glutamicum. Lastly, we outline how the manipulation of pathway genes has led to the biosynthesis of chondroitin derivatives.
Collapse
|
3
|
Zhou LJ, Guo LB, Wei W, Lv ZX, Zhang YW. A Novel Chondroitin AC Lyase With Broad Substrate Specificity From Pedobacter rhizosphaerae: Cloning, Expression, and Characterization. Front Bioeng Biotechnol 2022; 9:808872. [PMID: 35004658 PMCID: PMC8733870 DOI: 10.3389/fbioe.2021.808872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 12/01/2022] Open
Abstract
Chondroitin AC lyase (ChSaseAC) is one of the essential polysaccharides lyases in low molecular chondroitin sulfate production. In this work, a novel PrChSaseAC from Pedobacter rhizosphaerae was successfully cloned, expressed in Escherichia coli. After optimizing the induction, the recombinant PrChSaseAC could be expressed efficiently at 0.1 mM IPTG, 25°C, and 12 h induction. Then, it was purified with Ni-NTA affinity chromatography. The characterization of the purified PrChSaseAC showed that it had high specific activity and good storage stability, which would favor the production of low molecular weight chondroitin sulfate. It also displayed activity toward chondroitin sulfate C and hyaluronic acid. PrChSaseAC had the highest activity at pH 7.5, 37°C, 10 mM Ca2+, and 5 mg/ml of chondroitin sulfate A. Molecular docking of substrate and enzyme showed the interactions between the enzyme and substrate; it revealed that the enzyme showed high activity to CS-A and hyaluronic acid, but lower activity to CS-C attributed to the structure of the binding pocket. The high stability and specific activity of the enzyme will benefit the industrial production or clinical treatment.
Collapse
Affiliation(s)
- Li-Jian Zhou
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Li-Bin Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wei Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China.,Zhongshiduqing Biotechnology Co. Ltd., Heze, China
| | - Zhi-Xiang Lv
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Boleij M, Kleikamp H, Pabst M, Neu TR, van Loosdrecht MCM, Lin Y. Decorating the Anammox House: Sialic Acids and Sulfated Glycosaminoglycans in the Extracellular Polymeric Substances of Anammox Granular Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5218-5226. [PMID: 32227885 PMCID: PMC7181257 DOI: 10.1021/acs.est.9b07207] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 05/22/2023]
Abstract
Anammox (anaerobic ammonium oxidation) bacteria are important for the nitrogen cycle in both natural environments and wastewater treatment plants. These bacteria have a strong tendency to grow in aggregates like biofilms and granular sludge. To understand the formation of anammox aggregates, it is required to unravel the composition of the extracellular polymeric substances (EPS), which are produced by the bacteria to develop into aggregates and granules. Here, we investigated anionic polymers in anammox granular sludge, focussing on sialic acids and sulfated glycosaminoglycans. Quantification assays and fluorescent stains indicated that sialic acids and sulfated glycosaminoglycans were present in the anammox EPS (1.6% equivalents of sialic acids and 2.4% equivalents of sulfated glycosaminoglycans). Additionally, the potential genes for the biosynthesis of sialic acids and sulfated glycosaminoglycans were analyzed in the anammox draft genomes. The finding of these components in anammox granular sludge and previously in other nonpathogenic bacteria pointed out that sialic acids and sulfated glycosaminoglycans are worth investigating in the context of a broader function in microbial communities and biofilm systems in general.
Collapse
Affiliation(s)
- Marissa Boleij
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Hugo Kleikamp
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Martin Pabst
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Thomas R. Neu
- Department
of River Ecology, Helmholtz Centre for Environmental
Research − UFZ, Brueckstrasse 3A, Magdeburg 39114, Germany
| | - Mark C. M. van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Yuemei Lin
- Department
of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
5
|
Villamil Díaz LM, Esguerra Rodríguez D. Enterococcus, Myroides Y Exiguobacterium: GÉNEROS BACTERIANOS CON POTENCIAL PROBIÓTICO PARA EL CULTIVO DE TILAPIA NILÓTICA (Oreochromis niloticus). ACTA BIOLÓGICA COLOMBIANA 2017. [DOI: 10.15446/abc.v22n3.59974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se aislaron 120 morfotipos bacterianos de intestino de tilapia y se seleccionaron según su actividad antibacteriana contra patógenos como Aeromonas hydrophila, Streptococcus agalactiae y Edwardsiella tarda, su capacidad de adherencia a mucus intestinal y cinética de crecimiento. Las bacterias seleccionadas se identificaron mediante secuenciación de 16S rRNA y se identificaron como Exigobacterium sp. I9, Enterococcus faecalis I15 y Myroides odoratimimus I19. Además, se evaluó su efecto in vivo sobre el crecimiento de los peces, mediante su adición al alimento de juveniles de Oreochromis niloticus (106 UFC / g, por 15 días). Se determinó la supervivencia luego de un desafío experimental con Edwardsiella tarda por inyección intraperitoneal (100 µL 105 UFC / mL). Las tres bacterias seleccionadas incrementaron la tasa de crecimiento específica, redujeron la mortalidad de los peces durante el desafío experimental con E. tarda y no causaron mortalidad durante la adición en el alimento. Los efectos positivos in vivo se relacionan posiblemente con actividad in vitro; sin embargo, por motivos de bioseguridad se recomienda efectuar estudios posteriores a Exigobacterium sp. I9y E. faecalis I15 dado que se han reportado miembros de este género como causantes de mortalidad en peces, mientras que en el caso de M. odoratimimus I19, es necesario efectuar futuros estudios para verificar su actividad positiva a mayor escala productiva.
Collapse
|
6
|
Mukherjee N, Bartelli D, Patra C, Chauhan BV, Dowd SE, Banerjee P. Microbial Diversity of Source and Point-of-Use Water in Rural Haiti - A Pyrosequencing-Based Metagenomic Survey. PLoS One 2016; 11:e0167353. [PMID: 27936055 PMCID: PMC5147895 DOI: 10.1371/journal.pone.0167353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/12/2016] [Indexed: 12/26/2022] Open
Abstract
Haiti endures the poorest water and sanitation infrastructure in the Western Hemisphere, where waterborne diseases cause significant morbidity and mortality. Most of these diseases are reported to be caused by waterborne pathogens. In this study, we examined the overall bacterial diversity of selected source and point-of-use water from rural areas in Central Plateau, Haiti using pyrosequencing of 16s rRNA genes. Taxonomic composition of water samples revealed an abundance of Firmicutes phyla, followed by Proteobacteria and Bacteroidetes. A total of 38 bacterial families and 60 genera were identified. The presence of several Klebsiella spp. (tentatively, K. pneumoniae, K. variicola and other Klebsiella spp.) was detected in most water samples. Several other human pathogens such as Aeromonas, Bacillus, Clostridium, and Yersinia constituted significantly higher proportion of bacterial communities in the point-of-use water samples compared to source water. Bacterial genera traditionally associated with biofilm formation, such as Chryseobacterium, Fusobacterium, Prevotella, Pseudomonas were found in the point-of-use waters obtained from water filters or domestic water storage containers. Although the pyrosequencing method utilized in this study did not reveal the viability status of these pathogens, the abundance of genetic footprints of the pathogens in water samples indicate the probable risk of bacterial transmission to humans. Therefore, the importance of appropriate handling, purification, and treatment of the source water needed to be clearly communicated to the communities in rural Haiti to ensure the water is safe for their daily use and intake.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
| | - Debra Bartelli
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
| | - Cyril Patra
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
| | - Bhavin V. Chauhan
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
| | - Scot E. Dowd
- Molecular Research LP (MR DNA), Shallowater, Texas, United States of America
| | - Pratik Banerjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|