1
|
Zhang P, Wang H, Klima C, Yang X. Microbiota in lymph nodes of cattle harvested in a Canadian meat processing plant. Food Res Int 2024; 191:114693. [PMID: 39059949 DOI: 10.1016/j.foodres.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Lymph nodes (LN) harboring bacteria, when being incorporated into ground beef, may impact the microbial safety and quality of such products. We tested two main foodborne pathogens Salmonella and Shiga toxin-producing Escherichia coli (STEC) and profiled the microbiota in LNs (n = 160) of cattle harvested at a Canadian abattoir, by conventional plating methods, PCR, and high throughput sequencing. LNs at two anatomical locations, subiliac and popliteal from 80 cattle were included. All cattle had bacteria detected in popliteal and/or subiliac LNs with the maximum bacterial load of 5.4 and 2.8 log10CFU/g in popliteal and subiliac LNs, respectively. Neither Salmonella nor STEC was found in LNs although STEC was detected in a significant percentage of samples from beef hides (50.6 %) by plating and/or PCR. Both 16S rRNA gene amplicon and metagenome sequencing found the predominance of Escherichia (13-34.6 % among bacterial community), Clostridium (12.6-20.6 %) and Streptococcus (9.7-10 %) in popliteal LNs. Metagenomic sequencing was able to identify the predominant taxa at species level with E. coli (13 %), Clostridium perfringens (11.1 %) and Streptococcus uberis (6 %) predominant in LNs. Low prevalence/abundance of Salmonella was found by metagenomic sequencing. In conclusion, the relatively high bacterial load and diversity in LNs may affect the shelf life of ground beef and high relative abundance of E. coli would warrant further monitoring.
Collapse
Affiliation(s)
- Peipei Zhang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Hui Wang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Cassidy Klima
- Beef Cattle Research Council, Calgary, Alberta, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada.
| |
Collapse
|
2
|
Hu Z, Xiao Y, Wang B, Jin TZ, Lyu W, Ren D. Combined treatments of low dose irradiation with antimicrobials for inactivation of foodborne pathogens on fresh pork. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Hanchanachai N, Chumnanpuen P, E-Kobon T. Interaction study of Pasteurella multocida with culturable aerobic bacteria isolated from porcine respiratory tracts using coculture in conditioned media. BMC Microbiol 2021; 21:19. [PMID: 33422011 PMCID: PMC7796573 DOI: 10.1186/s12866-020-02071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
Background The porcine respiratory tract harbours multiple microorganisms, and the interactions between these organisms could be associated with animal health status. Pasteurella multocida is a culturable facultative anaerobic bacterium isolated from healthy and diseased porcine respiratory tracts. The interaction between P. multocida and other aerobic commensal bacteria in the porcine respiratory tract is not well understood. This study aimed to determine the interactions between porcine P. multocida capsular serotype A and D strains and other culturable aerobic bacteria isolated from porcine respiratory tracts using a coculture assay in conditioned media followed by calculation of the growth rates and interaction parameters. Results One hundred and sixteen bacterial samples were isolated from five porcine respiratory tracts, and 93 isolates were identified and phylogenetically classified into fourteen genera based on 16S rRNA sequences. Thirteen isolates from Gram-negative bacterial genera and two isolates from the Gram-positive bacterial genus were selected for coculture with P. multocida. From 17 × 17 (289) interaction pairs, the majority of 220 pairs had negative interactions indicating competition for nutrients and space, while 17 pairs were identified as mild cooperative or positive interactions indicating their coexistence. All conditioned media, except those of Acinetobacter, could inhibit P. multocida growth. Conversely, the conditioned media of P. multocida also inhibited the growth of nine isolates plus themselves. Conclusion Negative interaction was the major interactions among the coculture of these 15 representative isolates and the coculture with P. multocida. The conditioned media in this study might be further analysed to identify critical molecules and examined by the in vivo experiments. The study proposed the possibility of using these molecules in conditioned media to control P. multocida growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02071-4.
Collapse
Affiliation(s)
- Nonzee Hanchanachai
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Computational Biomodelling Laboratory for Agricultural Science and Technology, Kasetsart University, Bangkok, 10900, Thailand
| | - Pramote Chumnanpuen
- Computational Biomodelling Laboratory for Agricultural Science and Technology, Kasetsart University, Bangkok, 10900, Thailand.,Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Teerasak E-Kobon
- Computational Biomodelling Laboratory for Agricultural Science and Technology, Kasetsart University, Bangkok, 10900, Thailand. .,Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. .,Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Harvey RB, Norman KN, Anderson RC, Nisbet DJ. A Preliminary Study on the Presence of Salmonella in Lymph Nodes of Sows at Processing Plants in the United States. Microorganisms 2020; 8:E1602. [PMID: 33080997 PMCID: PMC7603275 DOI: 10.3390/microorganisms8101602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Salmonella-contaminated lymph nodes (LN), when included into edible meat products, are a potential source of Salmonella foodborne disease. In this survey, ventral superficial cervical and mandibular LN were tested for the presence of Salmonella from two sow processing plants in the midwestern United States. Results indicate that both LN can be contaminated with Salmonella; mandibular LN have higher prevalence (p < 0.05) of Salmonella than cervical LN (16% vs. 0.91%), and the majority (>90%) of Salmonella isolates are pan-susceptible or resistant to one antimicrobial, while 9.78% of isolates were multi-drug-resistant (MDR-resistant to three or more classes of antimicrobials). Intervention methods to prevent foodborne disease could include elimination of these LN from pork products or inclusion of LN only into products that are destined for cooking. Integrated multi-faceted intervention methods need to be developed to reduce Salmonella in the food chain.
Collapse
Affiliation(s)
- Roger B. Harvey
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, TX 77845-4988, USA; (R.C.A.); (D.J.N.)
| | - Keri N. Norman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biosciences, Texas A&M University, College Station, TX 77843, USA;
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, TX 77845-4988, USA; (R.C.A.); (D.J.N.)
| | - David J. Nisbet
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, TX 77845-4988, USA; (R.C.A.); (D.J.N.)
| |
Collapse
|
5
|
Maturational Changes Alter Effects of Dietary Phytase Supplementation on the Fecal Microbiome in Fattening Pigs. Microorganisms 2020; 8:microorganisms8071073. [PMID: 32708445 PMCID: PMC7409029 DOI: 10.3390/microorganisms8071073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023] Open
Abstract
Age-related successions in the porcine gut microbiome may modify the microbial response to dietary changes. This may especially affect the bacterial response to essential nutrients for bacterial metabolism, such as phosphorus (P). Against this background, we used phytase supplementation (0 or 650 phytase units/kg complete feed) to alter the P availability in the hindgut and studied the dietary response of the fecal bacterial microbiome from the early to late fattening period. Fecal DNA were isolated after 0, 3, 5 and 10 weeks and the V3-V4 region of the 16S rRNA gene was sequenced. Permutational analysis of variance showed distinct bacterial communities for diet and week. Alpha-diversity and taxonomy indicated progressing maturation of the bacterial community with age. Prevotellaceae declined, whereas Clostridiaceae and Ruminococcaceae increased from weeks 0 to 3, 5, and 10, indicating changes in fiber-digesting capacities with age. Phytase affected all major bacterial taxa but reduced species richness (Chao1) and diversity (Shannon and Simpson). To conclude, present results greatly support the importance of available P for bacterial proliferation, including fibrolytic, lactic acid- and butyrate-producing genera, in pigs. Results also emphasize the necessity to assess bacterial responses to dietary manipulation at several time points throughout the fattening period.
Collapse
|
6
|
Bovine lymph nodes as a source of Escherichia coli contamination of the meat. Int J Food Microbiol 2020; 331:108715. [PMID: 32554040 DOI: 10.1016/j.ijfoodmicro.2020.108715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
Ground beef contamination with Escherichia coli is usually a result of carcass faecal contamination during the slaughter process. Carcasses are contaminated when they come into contact with soiled hides or intestinal leakage content during dressing and the evisceration processes. A more recent and compelling hypothesis is that, when lymph nodes are present in manufacturing beef trimmings, they can be a potential source of Enterobacteriaceae contamination of ground beef. The aim of this study was to investigate the occurrence of E. coli in lymph nodes from beef carcasses used for ground meat production, in six slaughter plants situated in central Italy A total of 597 subiliac (precrural) lymph nodes were obtained from 597 cattle carcasses and screened for E. coli by culture. Furthermore, E. coli isolates (one per positive carcass) were tested for stx1, stx2 eaeA and hlyA genes that are commonly used to identify and characterise shiga toxin-producing E. coli (STEC). In addition, the E. coli isolates were profiled for antimicrobial susceptibility. A proportion of 34.2% (204/597) carcasses were positive for E. coli. PCR revealed that 29% (59/204) of E. coli possessed stx1 or stx2 which corresponded to 9.9% of the cattle sampled. Moreover, a combination of stx1 or stx2 and eaeA was found in in 4 isolates (2% among E. coli positive samples and 1% among cattle sampled) and a combination of stx1 or stx2 and eaeA and hly in 1 isolate (0.5% and 0.2%). More than 95% of isolates were susceptible to gentamicin, ceftriaxone, cyprofloxacin and cefotaxime while high rates of resistance were recorded for cephalotin, ampicillin, tetracycline, tripe sulfa and streptomycin. The multivariate analysis identified "age" as the factor most closely related to E. coli positivity (either generic E. coli or STEC) in bovine lymph nodes. In conclusion, subiliac lymph nodes represent a source of E. coli for ground beef. These results are of major importance for risk assessment and improving good manufacturing practices during animal slaughter and ground meat production.
Collapse
|
7
|
Alterations of the Viable Ileal Microbiota of the Gut Mucosa-Lymph Node Axis in Pigs Fed Phytase and Lactic Acid-Treated Cereals. Appl Environ Microbiol 2020; 86:AEM.02128-19. [PMID: 31757823 DOI: 10.1128/aem.02128-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
The gut-lymph node axis is a critical player in the symbiotic relationship between gut microbiota and the host. However, little is known about the impact of diet-related bacterial shifts in the gut lumen on bacterial translocation into lymph nodes. Here, we (i) characterized changes in the viable microbiota composition along the ileal digesta-mucosa-lymph node axis and (ii) examined the effect of dietary phytase supplementation and lactic acid (LA) soaking of cereals on the bacterial taxonomy along this axis, together with their effect on the mucosal expression of innate immune and barrier function genes in pigs (n = 8/diet). After 18 days on diets, ileal digesta, mucosa, and ileocecal lymph nodes (ICLNs) were collected for RNA isolation and 16S rRNA-based high-resolution community profiling. Bacterial communities were dominated by Lactobacillaceae and Clostridiaceae, with clearly distinguishable profiles at the three sampling sites. Specific bacterial subsampling was indicated by enrichment of the ICLNs with Lactobacillaceae, Lachnospiraceae, Veillonellaceae, and Methanobacteriaceae and less Clostridiaceae, Pasteurellaceae, Helicobacteraceae, and Enterobacteriaceae compared to that of the mucosa. LA treatment of cereals reduced proteolytic taxa in the lumen, including pathobionts like Helicobacteraceae, Campylobacteraceae, and Fusobacteriaceae When combined, phytase- and LA-treated cereals largely increased species richness, while the single treatments reduced Actinobacteria and Bacteroidetes in ICLNs and increased mucosal MUC2 expression. In contrast, phytase reduced mucosal CDH1 expression, indicating altered barrier function with potential effects on bacterial translocation. Overall, both treatments, although often differently, changed the viable microbiome along the digesta-mucosa-lymph node axis in the ileum, probably due to altered substrate availability and microbial-host interactions.IMPORTANCE A host's diet largely determines the gut microbial composition and therefore may influence bacterial translocation into ICLNs. Due to its importance for cell metabolism, the intestinal phosphorus availability, which was modified here by phytase and LA treatment of cereals, affects the intestinal microbiota. Previous studies mainly focused on bacteria in the lumen. The novelty of this work resides mainly in that we report diet-microbe effects along the digesta-mucosa-ICLN axis and linked those effects to mucosal expression of barrier function genes as crucial components for host health. Lymph nodes can serve as reservoir of pathobionts; therefore, present diet-microbiome-host interactions have implications for food safety.
Collapse
|
8
|
Zwirzitz B, Pinior B, Metzler-Zebeli B, Handler M, Gense K, Knecht C, Ladinig A, Dzieciol M, Wetzels SU, Wagner M, Schmitz-Esser S, Mann E. Microbiota of the Gut-Lymph Node Axis: Depletion of Mucosa-Associated Segmented Filamentous Bacteria and Enrichment of Methanobrevibacter by Colistin Sulfate and Linco-Spectin in Pigs. Front Microbiol 2019; 10:599. [PMID: 31031713 PMCID: PMC6470194 DOI: 10.3389/fmicb.2019.00599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Microorganisms are translocated from the gut to lymphatic tissues via immune cells, thereby challenging and training the mammalian immune system. Antibiotics alter the gut microbiome and consecutively might also affect the corresponding translocation processes, resulting in an imbalanced state between the intestinal microbiota and the host. Hence, understanding the variant effects of antibiotics on the microbiome of gut-associated tissues is of vital importance for maintaining metabolic homeostasis and animal health. In the present study, we analyzed the microbiome of (i) pig feces, ileum, and ileocecal lymph nodes under the influence of antibiotics (Linco-Spectin and Colistin sulfate) using 16S rRNA gene sequencing for high-resolution community profiling and (ii) ileocecal lymph nodes in more detail with two additional methodological approaches, i.e., cultivation of ileocecal lymph node samples and (iii) metatranscriptome sequencing of a single lymph node sample. Supplementation of medicated feed showed a local effect on feces and ileal mucosa-associated microbiomes. Pigs that received antibiotics harbored significantly reduced amounts of segmented filamentous bacteria (SFB) along the ileal mucosa (p = 0.048; 199.17-fold change) and increased amounts of Methanobrevibacter, a methanogenic Euryarchaeote in fecal samples (p = 0.005; 20.17-fold change) compared to the control group. Analysis of the porcine ileocecal lymph node microbiome exposed large differences between the viable and the dead fraction of microorganisms and the microbiome was altered to a lesser extent by antibiotics compared with feces and ileum. The core microbiome of lymph nodes was constituted mainly of Proteobacteria. RNA-sequencing of a single lymph node sample unveiled transcripts responsible for amino acid and carbohydrate metabolism as well as protein turnover, DNA replication and signal transduction. The study presented here is the first comparative study of microbial communities in feces, ileum, and its associated ileocecal lymph nodes. In each analyzed site, we identified specific phylotypes susceptible to antibiotic treatment that can have profound impacts on the host physiological and immunological state, or even on global biogeochemical cycles. Our results indicate that pathogenic bacteria, e.g., enteropathogenic Escherichia coli, could escape antibiotic treatment by translocating to lymph nodes. In general ileocecal lymph nodes harbor a more diverse and active community of microorganisms than previously assumed.
Collapse
Affiliation(s)
- Benjamin Zwirzitz
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Beate Pinior
- Institute for Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Metzler-Zebeli
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria.,Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Monika Handler
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Gense
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Monika Dzieciol
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Stefanie U Wetzels
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Martin Wagner
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | | | - Evelyne Mann
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| |
Collapse
|
9
|
Meekhanon N, Kaewmongkol S, Jirawattanapong P, Kaminsonsakul T, Kongsoi S, Chumsing S, Okura M, Ueno Y, Sekizaki T, Takamatsu D. High rate misidentification of biochemically determined Streptococcus isolates from swine clinical specimens. J Vet Med Sci 2019; 81:567-572. [PMID: 30814435 PMCID: PMC6483909 DOI: 10.1292/jvms.18-0678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, 22 bacterial isolates from swine necropsy specimens, which were biochemically identified as Streptococcus suis and other Streptococcus species, were re-examined using species-specific PCR for authentic S. suis and 16S rRNA gene sequencing for the verification of the former judge. Identification of S. suis on the basis of biochemical characteristics showed high false-positive (70.6%) and false-negative (60%) rates. The authentic S. suis showed various capsular polysaccharide synthesis gene types, including type 2 that often isolated from human cases. Five of 22 isolates did not even belong to the genus Streptococcus. These results suggested that the misidentification of the causative pathogen in routine veterinary diagnosis could be a substantial obstacle for the control of emerging infectious diseases.
Collapse
Affiliation(s)
- Nattakan Meekhanon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Sarawan Kaewmongkol
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Pichai Jirawattanapong
- Department of Farm Resources and Production Medicines, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Tanyanant Kaminsonsakul
- Kamphaengsaen Veterinary Diagnostic Unit, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Suksan Chumsing
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yuichi Ueno
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
10
|
Mann E, Pinior B, Wetzels SU, Metzler-Zebeli BU, Wagner M, Schmitz-Esser S. The Metabolically Active Bacterial Microbiome of Tonsils and Mandibular Lymph Nodes of Slaughter Pigs. Front Microbiol 2015; 6:1362. [PMID: 26696976 PMCID: PMC4678201 DOI: 10.3389/fmicb.2015.01362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/17/2015] [Indexed: 12/14/2022] Open
Abstract
The exploration of microbiomes in lymphatic organs is relevant for basic and applied research into explaining microbial translocation processes and understanding cross-contamination during slaughter. This study aimed to investigate whether metabolically active bacteria (MAB) could be detected within tonsils and mandibular lymph nodes (MLNs) of pigs. The hypervariable V1-V2 region of the bacterial 16S rRNA genes was amplified from cDNA from tonsils and MLNs of eight clinically healthy slaughter pigs. Pyrosequencing yielded 82,857 quality-controlled sequences, clustering into 576 operational taxonomic units (OTUs), which were assigned to 230 genera and 16 phyla. The actual number of detected OTUs per sample varied highly (23–171 OTUs). Prevotella zoogleoformans and Serratia proteamaculans (best type strain hits) were most abundant (10.6 and 41.8%, respectively) in tonsils and MLNs, respectively. To explore bacterial correlation patterns between samples of each tissue, pairwise Spearman correlations (rs) were calculated. In total, 194 strong positive and negative correlations |rs| ≥ 0.6 were found. We conclude that (i) lymphatic organs harbor a high diversity of MAB, (ii) the occurrence of viable bacteria in lymph nodes is not restricted to pathological processes and (iii) lymphatic tissues may serve as a contamination source in pig slaughterhouses. This study confirms the necessity of the EFSA regulation with regard to a meat inspection based on visual examinations to foster a minimization of microbial contamination.
Collapse
Affiliation(s)
- Evelyne Mann
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria ; Research Cluster 'Animal Gut Health', Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Beate Pinior
- Institute for Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Stefanie U Wetzels
- Research Cluster 'Animal Gut Health', Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria ; Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Barbara U Metzler-Zebeli
- Research Cluster 'Animal Gut Health', Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria ; University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria ; Research Cluster 'Animal Gut Health', Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Stephan Schmitz-Esser
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria ; Research Cluster 'Animal Gut Health', Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|