1
|
Shao L, Shen Z, Li M, Guan C, Fan B, Chai Y, Zhao Y. ccdC Regulates Biofilm Dispersal in Bacillus velezensis FZB42. Int J Mol Sci 2024; 25:5201. [PMID: 38791239 PMCID: PMC11120784 DOI: 10.3390/ijms25105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Bacillus velezensis FZB42 is a plant growth-promoting rhizobacterium (PGPR) and a model microorganism for biofilm studies. Biofilms are required for the colonization and promotion of plant growth in the rhizosphere. However, little is known about how the final stage of the biofilm life cycle is regulated, when cells regain their motility and escape the mature biofilm to spread and colonize new niches. In this study, the non-annotated gene ccdC was found to be involved in the process of biofilm dispersion. We found that the ccdC-deficient strain maintained a wrinkled state at the late stage of biofilm formation in the liquid-gas interface culture, and the bottom solution showed a clear state, indicating that no bacterial cells actively escaped, which was further evidenced by the formation of a cellular ring (biofilm pellicle) located on top of the preformed biofilm. It can be concluded that dispersal, a biofilm property that relies on motility proficiency, is also positively affected by the unannotated gene ccdC. Furthermore, we found that the level of cyclic diguanylate (c-di-GMP) in the ccdC-deficient strain was significantly greater than that in the wild-type strain, suggesting that B. velezensis exhibits a similar mechanism by regulating the level of c-di-GMP, the master regulator of biofilm formation, dispersal, and cell motility, which controls the fitness of biofilms in Pseudomonas aeruginosain. In this study, we investigated the mechanism regulating biofilm dispersion in PGPR.
Collapse
Affiliation(s)
- Lin Shao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zizhu Shen
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meiju Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyun Guan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yinjuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Santoro S, Bertoni G, Ferrara S. Fluorescence-based Evaluation of Cyclic di-GMP Levels in Pseudomonas aeruginosa. Methods Mol Biol 2024; 2721:45-54. [PMID: 37819514 DOI: 10.1007/978-1-0716-3473-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The ability of Pseudomonas aeruginosa to establish chronic infections is associated with an effective switch from a motile to a sessile lifestyle. This proficiency is controlled by intracellular levels of the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Targeting the c-di-GMP network could be a strategy to interfere with P. aeruginosa pathogenicity. Therefore, the development of tools to profile c-di-GMP intracellular levels is crucial. Here, we describe a protocol for the in vivo measurement of c-di-GMP levels in P. aeruginosa.
Collapse
Affiliation(s)
- Silvia Santoro
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Milano, Italy
| | - Silvia Ferrara
- Department of Biosciences, Università degli Studi di Milano, Milan, Milano, Italy.
| |
Collapse
|
3
|
Grossich R, Lemos Vilches M, Costa CS, Pezzoni M. Role of Pel and Psl polysaccharides in the response of Pseudomonas aeruginosa to environmental challenges: oxidative stress agents (UVA, H 2O 2, sodium hypochlorite) and its competitor Staphylococcus aureus. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36757866 DOI: 10.1099/mic.0.001301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pseudomonas aeruginosa is a versatile bacterium capable of adapting to a wide range of stress factors, including solar UVA radiation (400-315 nm). High UVA doses produce lethal effects due to the action of reactive oxygen species. Sublethal UVA doses also induces oxidative damage, but, in addition, it triggers a variety of adaptive responses, including the overexpression of pelA and pslA genes in P. aeruginosa. These genes encode the synthesis of Pel and Psl, which are essential polysaccharides in biofilm formation. The present study analysed the role of Pel and Psl in the adaptive responses generated by exposure to low UVA doses, and their importance in the response to lethal doses of UVA, hydrogen peroxide (H2O2), and sodium hypochlorite, in both planktonic cells and submerged and air-liquid interface (ALI) biofilms. It also studied the roles of Pel and Psl in P. aeruginosa-Staphylococcus aureus interaction. The results demonstrate that the capacity of sublethal UVA exposure to increase cell hydrophobicity and cell attachment and generate cross-protection phenomena in P. aeruginosa depends on the presence of Pel and Psl. The study also shows that Pel and Psl have a key role in the tolerance to lethal doses of UVA radiation, sodium hypochlorite and H2O2, in both biofilms and planktonic cells. Finally, co-culture assays showed total inhibition of S. aureus growth in presence of P. aeruginosa. This phenomenon depends, at least in part, on the simultaneous presence of Pel and Psl in planktonic cells and biofilms, suggesting a relevant role of these polysaccharides in the interaction between these species.
Collapse
Affiliation(s)
- Romina Grossich
- Departamento de Radiobiología, Comision Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Martín Lemos Vilches
- Departamento de Radiobiología, Comision Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comision Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comision Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| |
Collapse
|
4
|
Pseudomonas aeruginosa biofilm dispersion by the mouse antimicrobial peptide CRAMP. Vet Res 2022; 53:80. [PMID: 36209206 PMCID: PMC9548163 DOI: 10.1186/s13567-022-01097-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a known bacterium that produces biofilms and causes severe infection. Furthermore, P. aeruginosa biofilms are extremely difficult to eradicate, leading to the development of chronic and antibiotic-resistant infections. Our previous study showed that a cathelicidin-related antimicrobial peptide (CRAMP) inhibits the formation of P. aeruginosa biofilms and markedly reduces the biomass of preformed biofilms, while the mechanism of eradicating bacterial biofilms remains elusive. Therefore, in this study, the potential mechanism by which CRAMP eradicates P. aeruginosa biofilms was investigated through an integrative analysis of transcriptomic, proteomic, and metabolomic data. The omics data revealed CRAMP functioned against P. aeruginosa biofilms by different pathways, including the Pseudomonas quinolone signal (PQS) system, cyclic dimeric guanosine monophosphate (c-di-GMP) signalling pathway, and synthesis pathways of exopolysaccharides and rhamnolipid. Moreover, a total of 2914 differential transcripts, 785 differential proteins, and 280 differential metabolites were identified. A series of phenotypic validation tests demonstrated that CRAMP reduced the c-di-GMP level with a decrease in exopolysaccharides, especially alginate, in P. aeruginosa PAO1 biofilm cells, improved bacterial flagellar motility, and increased the rhamnolipid content, contributing to the dispersion of biofilms. Our study provides new insight into the development of CRAMP as a potentially effective antibiofilm dispersant.
Collapse
|
5
|
Fortuna A, Bähre H, Visca P, Rampioni G, Leoni L. The two Pseudomonas aeruginosa DksA stringent response proteins are largely interchangeable at the whole transcriptome level and in the control of virulence-related traits. Environ Microbiol 2021; 23:5487-5504. [PMID: 34327807 DOI: 10.1111/1462-2920.15693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
The stringent response regulator DksA plays a key role in Gram negative bacteria adaptation to challenging environments. Intriguingly, the plant and human pathogen Pseudomonas aeruginosa is unique as it expresses two functional DksA paralogs: DksA1 and DksA2. However, the role of DksA2 in P. aeruginosa adaptive strategies has been poorly investigated so far. Here, RNA-Seq analysis and phenotypic assays showed that P. aeruginosa DksA1 and DksA2 proteins are largely interchangeable. Relative to wild type P. aeruginosa, transcription of 1779 genes was altered in a dksA1 dksA2 double mutant, and the wild type expression level of ≥90% of these genes was restored by in trans complementation with either dksA1 or dksA2. Interestingly, the expression of a small sub-set of genes seems to be preferentially or exclusively complemented by either dksA1 or dksA2. In addition, evidence has been provided that the DksA-dependent regulation of virulence genes expression is independent and hierarchically dominant over two major P. aeruginosa regulatory circuits, i.e., quorum sensing and cyclic-di-GMP signalling systems. Our findings support the prominent role of both DksA paralogs in P. aeruginosa environmental adaptation.
Collapse
Affiliation(s)
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
6
|
Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, Pawar S. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. BIOFOULING 2019; 35:34-49. [PMID: 30727758 DOI: 10.1080/08927014.2018.1563686] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Quorum sensing (QS), the communication signaling network, regulates biofilm formation and several virulence factors in Pseudomonas aeruginosa PAO1, a nosocomial opportunistic pathogen. QS is considered to be a challenging target for compounds antagonistic to virulent factors. Biologically synthesized silver nanoparticles (AgNPs) are reported as anti-QS and anti-biofilm drugs against bacterial infections. The present study reports on the synthesis and characterization of Piper betle (Pb) mediated AgNPs (Pb-AgNPs). The anti-QS activity of Pb-AgNPs against Chromobacterium violaceum and the potential effect of Pb-AgNPs on QS-regulated phenotypes in PAO1 were studied. FTIR analysis exhibited that Pb-AgNPs had been capped by phytochemical constituents of Pb. Eugenol is one of the active phenolic phytochemicals in Pb leaves, therefore molecular docking of eugenol-conjugated AgNPs on QS regulator proteins (LasR, LasI and MvfR) was performed. Eugenol-conjugated AgNPs showed considerable binding interactions with QS-associated proteins. These results provide novel insights into the development of phytochemically conjugated nanoparticles as promising anti-infective candidates.
Collapse
Affiliation(s)
- Saloni Shah
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Swapnil Gaikwad
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Shuchi Nagar
- b Bioinformatics Research Laboratory , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Shatavari Kulshrestha
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Viniti Vaidya
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Neelu Nawani
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Sarika Pawar
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| |
Collapse
|
7
|
Paiardini A, Mantoni F, Giardina G, Paone A, Janson G, Leoni L, Rampioni G, Cutruzzolà F, Rinaldo S. A novel bacterial l-arginine sensor controlling c-di-GMP levels in Pseudomonas aeruginosa. Proteins 2018; 86:1088-1096. [PMID: 30040157 DOI: 10.1002/prot.25587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023]
Abstract
Nutrients such as amino acids play key roles in shaping the metabolism of microorganisms in natural environments and in host-pathogen interactions. Beyond taking part to cellular metabolism and to protein synthesis, amino acids are also signaling molecules able to influence group behavior in microorganisms, such as biofilm formation. This lifestyle switch involves complex metabolic reprogramming controlled by local variation of the second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP). The intracellular levels of this dinucleotide are finely tuned by the opposite activity of dedicated diguanylate cyclases (GGDEF signature) and phosphodiesterases (EAL and HD-GYP signatures), which are usually allosterically controlled by a plethora of environmental and metabolic clues. Among the genes putatively involved in controlling c-di-GMP levels in P. aeruginosa, we found that the multidomain transmembrane protein PA0575, bearing the tandem signature GGDEF-EAL, is an l-arginine sensor able to hydrolyse c-di-GMP. Here, we investigate the basis of arginine recognition by integrating bioinformatics, molecular biophysics and microbiology. Although the role of nutrients such as l-arginine in controlling the cellular fate in P. aeruginosa (including biofilm, pathogenicity and virulence) is already well established, we identified the first l-arginine sensor able to link environment sensing, c-di-GMP signaling and biofilm formation in this bacterium.
Collapse
Affiliation(s)
- A Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - F Mantoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - G Giardina
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - A Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy
| | - G Janson
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy
| | - L Leoni
- Department of Science, University Roma Tre (I), Roma, Italy
| | - G Rampioni
- Department of Science, University Roma Tre (I), Roma, Italy
| | - F Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - S Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome (I), Roma, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
8
|
Cyclic di-GMP-Responsive Transcriptional Reporter Bioassays in Pseudomonas aeruginosa. Methods Mol Biol 2018; 1657:99-110. [PMID: 28889289 DOI: 10.1007/978-1-4939-7240-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
3',5'-cyclic diguanosine monophosphate (cyclic di-GMP) is a bacterial secondary messenger molecule that regulates many important cellular activities and behaviors, such as motility and biofilm formation. While mass spectrometry protocols for quantitative analyses of intracellular cyclic di-GMP concentrations have been developed, they are time intensive, expensive, low-throughput, and incapable of directly monitoring dynamic changes in vivo. In this protocol, we provide a Pseudomonas aeruginosa-specific detailed methodology to assay the intracellular levels of cyclic di-GMP using biological reporters.
Collapse
|
9
|
Leoni L, Pawar SV, Rampioni G. Genetic Tools to Study c-di-GMP-Dependent Signaling in Pseudomonas aeruginosa. Methods Mol Biol 2018; 1657:471-480. [PMID: 28889314 DOI: 10.1007/978-1-4939-7240-1_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa infections are often difficult or impossible to treat, mainly due to its ability to form antibiotic-resistant biofilms. Since c-di-GMP signaling strongly influences P. aeruginosa biofilm development and sensitivity to antibiotics, it is considered a promising target for the development of anti-biofilm drugs and it is under intensive investigation. However, studying c-di-GMP signaling in P. aeruginosa is challenging, mainly due to (1) the multiplicity of enzymes involved in c-di-GMP metabolism, (2) the difficulty to extract and measure c-di-GMP intracellular levels by chemical methods, and (3) the lack of genetic tools specifically dedicated to this purpose.Here, a bioluminescence-based reporter system convenient for studying cellular processes or compounds expected to cause an increase or a decrease in intracellular c-di-GMP levels produced by P. aeruginosa cultures is described. Bioluminescence is particularly appropriate in P. aeruginosa research, due to the high intensity of the signal and total lack of background noise. In addition, the use of genetic cassettes allowing the fine control of P. aeruginosa c-di-GMP intracellular levels via arabinose induction is described.Overall, the genetic tools described here could facilitate investigations tackling the c-di-GMP signaling process on different fields, from cellular physiology to drug-discovery research.
Collapse
Affiliation(s)
- Livia Leoni
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| | - Sarika Vishnu Pawar
- Microbial Diversity Research Centre, D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| |
Collapse
|
10
|
Discovering Selective Diguanylate Cyclase Inhibitors: From PleD to Discrimination of the Active Site of Cyclic-di-GMP Phosphodiesterases. Methods Mol Biol 2018; 1657:431-453. [PMID: 28889312 DOI: 10.1007/978-1-4939-7240-1_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the most important signals involved in controlling biofilm formation is represented by the intracellular second messenger 3',5'-cyclic diguanylic acid (c-di-GMP). Since the pathways involved in c-di-GMP biosynthesis and breakdown are found only in bacteria, targeting c-di-GMP metabolism represents an attractive strategy for the development of biofilm-disrupting drugs. Here, we present the workflow required to perform a structure-based design of inhibitors of diguanylate cyclases, the enzymes responsible for c-di-GMP biosynthesis. Downstream of the virtual screening process, detailed in the first part of the chapter, we report the step-by-step protocols required to test the positive hits in vitro and to validate their selectivity, thus minimizing possible off-target effects.
Collapse
|
11
|
Multiple Environmental Factors Influence the Importance of the Phosphodiesterase DipA upon Pseudomonas aeruginosa Swarming. Appl Environ Microbiol 2018; 84:AEM.02847-17. [PMID: 29427430 DOI: 10.1128/aem.02847-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/25/2018] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa exhibits flagellum-mediated swimming in liquid and swarming on hydrated surfaces under diverse nutrient conditions. Prior studies have implicated a phosphodiesterase, DipA, in regulating these flagellum-mediated motilities, but collectively, the necessity for DipA was unclear. In this study, we find that the medium composition conditionally constrains the influence of DipA on flagellar motility. We show that DipA exhibits more influence on minimal medium supplemented with glutamate or glucose, where flagellar motility was negated for the dipA mutant. Conversely, a dipA-deficient mutant exhibits flagellar motility when growing with LB Lennox broth and minimal medium supplemented with Casamino Acids. Swarming under these rich medium conditions occurs under elevated levels of c-di-GMP. We also demonstrate that the influence of DipA upon swimming often differs from that upon swarming, and we conclude that a direct comparison of the motility phenotypes is generally valid only when characterizing motility assay results from the same medium composition. Our results are consistent with the explanation that DipA is one of several phosphodiesterases responding to the nutrient environment sensed by P. aeruginosa On minimal medium with glutamate or glucose, DipA is dominant; however, on rich medium, the necessity of DipA is fully negated.IMPORTANCE Motile and ubiquitous bacteria such as Pseudomonas aeruginosa can quickly colonize surfaces and form biofilms in numerous environments such as water distribution systems, soil, and the human lung. To effectively disrupt bacterial colonization, it is imperative to understand how bacteria regulate motility in these different growth environments. Here, we show that the phosphodiesterase DipA is not required for flagellar motility under all nutrient conditions. Thus, the maintenance of intracellular c-di-GMP levels to promote flagellar motility or biofilm development must be conditionally regulated by differing phosphodiesterases in variation with select nutrient cues.
Collapse
|
12
|
Wang Y, Li Y, Wang J, Wang X. FleQ regulates both the type VI secretion system and flagella inPseudomonas putida. Biotechnol Appl Biochem 2017; 65:419-427. [DOI: 10.1002/bab.1611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Yuzhou Wang
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| | - Ye Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi People's Republic of China
| | - Jianli Wang
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi People's Republic of China
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| |
Collapse
|
13
|
Martínez-García E, de Lorenzo V. Molecular tools and emerging strategies for deep genetic/genomic refactoring of Pseudomonas. Curr Opin Biotechnol 2017; 47:120-132. [DOI: 10.1016/j.copbio.2017.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/19/2017] [Indexed: 11/26/2022]
|
14
|
Abstract
Cyclic dinucleotides (CDNs) are highly versatile signalling molecules that control various important biological processes in bacteria. The best-studied example is cyclic di-GMP (c-di-GMP). Known since the late 1980s, it is now recognized as a near-ubiquitous second messenger that coordinates diverse aspects of bacterial growth and behaviour, including motility, virulence, biofilm formation and cell cycle progression. In this Review, we discuss important new insights that have been gained into the molecular principles of c-di-GMP synthesis and degradation, which are mediated by diguanylate cyclases and c-di-GMP-specific phosphodiesterases, respectively, and the cellular functions that are exerted by c-di-GMP-binding effectors and their diverse targets. Finally, we provide a short overview of the signalling versatility of other CDNs, including c-di-AMP and cGMP-AMP (cGAMP).
Collapse
|
15
|
Zhou H, Zheng C, Su J, Chen B, Fu Y, Xie Y, Tang Q, Chou SH, He J. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter. Sci Rep 2016; 6:20871. [PMID: 26892868 PMCID: PMC4759541 DOI: 10.1038/srep20871] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/11/2016] [Indexed: 12/22/2022] Open
Abstract
c-di-GMP riboswitches are structured RNAs located in the 5'-untranslated regions (5'-UTRs) of mRNAs that regulate expression of downstream genes in response to changing concentrations of the second messenger c-di-GMP. We discovered three complete c-di-GMP riboswitches (Bc3, Bc4 and Bc5 RNA) with similar structures, which are arranged in tandem to constitute a triple-tandem (Bc3-5 RNA) riboswitch in the 5'-UTR of the cspABCDE mRNA in Bacillus thuringiensis subsp. chinensis CT-43. Our results showed that this natural triple-tandem riboswitch controlled the expression of the reporter gene more stringently and digitally than the double-tandem or single riboswitch. A sandwich-like dual-fluorescence reporter was further constructed by fusing the Bc3-5 RNA gene between the two fluorescence protein genes amcyan and turborfp. This reporter strain was found to exhibit detectable fluorescence color changes under bright field in response to intracellular c-di-GMP level altered by induced expression of diguanylate cyclase (DGC) PleD. Using this system, two putative membrane-bound DGCs from B. thuringiensis and Xanthomonas oryzae were verified to be functional by replacing pleD with the corresponding DGC genes. This report represented the first native triple-tandem riboswitch that was applied to serve as a riboswitch-based dual-fluorescence reporter for the efficient and convenient verification of putative DGC activity in vivo.
Collapse
Affiliation(s)
- Hang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Cao Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jianmei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Bo Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yang Fu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqun Xie
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|