1
|
Niyayesh H, Rahimi E, Shakerian A, Khamesipour F. Arcobacter species isolated from human stool samples, animal products, ready-to-eat salad mixes, and ambient water: prevalence, antimicrobial susceptibility, and virulence gene profiles. BMC Infect Dis 2024; 24:1368. [PMID: 39614142 DOI: 10.1186/s12879-024-10256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
INTRODUCTION Arcobacter species are emerging foodborne pathogens increasingly associated with human illness worldwide. They are commonly found in the gastrointestinal tracts of animals and are frequently isolated from various food sources, including raw meat, poultry, and seafood. The aim of this study is to investigate the antimicrobial resistance patterns of Arcobacter spp. isolated from human stool samples, animal products, ready-to-eat salad mixes, and ambient water, assess the presence of resistance genes, and explore their potential implications for public health. METHODS In this study, a total of 683 samples were collected from the Shahrekord area over a 12-month period. Samples were obtained from human stool, chicken meat, raw cow milk, RTE salad mixes, and environmental water sources. Two different methods were used to detect Arcobacter, depending on the sample type: bacteriological isolation and identification, and molecular identification. After identification, antimicrobial susceptibility testing was conducted. Polymerase chain reaction (PCR) was used to identify ten putative Arcobacter virulence and resistance genes. FINDINGS The results revealed that Arcobacter spp. were present in 26.06% (178 out of 683) of the tested samples, with varying isolation rates across different sample types. A. butzleri being the most commonly isolated species across all sample types, while A. cryaerophilus was restricted to RTE salads, surface waters, and chicken meat. Notably, A. skirrowii was only isolated from chicken meat and environmental water. The differences of Arcobacter spp. in prevalence between the sample types were statistically significant (p < 0.05), and no significant seasonal variation was found across the sampling periods (p > 0.05). PCR analysis for ten putative virulence genes indicated that the cadF gene was present in all Arcobacter isolates. Similarly, 83.33% of the tested strains harbored the ciaB gene, while other genes were less frequently detected. Regarding resistance genes, tet(O) (7.69%) was the most identified gene, followed by blaOXA-61 (4.37%). CONCLUSION In conclusion, this study highlights the alarming prevalence of antimicrobial resistance in Arcobacter spp. Monitoring Arcobacter spp. resistance can be achieved through surveillance, risk assessments, antibiotic stewardship in agriculture, public education, research collaborations, rapid diagnostics, and harmonized policies, all aimed at reducing contamination and safeguarding public health effectively.
Collapse
Affiliation(s)
- Hossein Niyayesh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Amir Shakerian
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Faham Khamesipour
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
2
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Martinez-Malaxetxebarria I, Girbau C, Salazar-Sánchez A, Baztarrika I, Martínez-Ballesteros I, Laorden L, Alonso R, Fernández-Astorga A. Genetic characterization and biofilm formation of potentially pathogenic foodborne Arcobacter isolates. Int J Food Microbiol 2022; 373:109712. [DOI: 10.1016/j.ijfoodmicro.2022.109712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
|
4
|
Lameei A, Rahimi E, Shakerian A, Momtaz H. Genotyping, antibiotic resistance and prevalence of Arcobacter species in milk and dairy products. Vet Med Sci 2022; 8:1841-1849. [PMID: 35426255 PMCID: PMC9297788 DOI: 10.1002/vms3.800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arcobacter spp. has been considered an emerging foodborne pathogen and a hazard to human health. The dairy chain has been isolated from different sources; nevertheless, data on Arcobacter occurrence in raw milk and dairy products in Iran are still scant. OBJECTIVE The present study investigates the prevalence, antimicrobial susceptibility and the presence of virulence genes of Arcobacters species isolated from milk and dairy products. METHODS Then, a total of 350 raw milk samples and 400 dairy product samples were collected from dairy supply centers in Isfahan, Iran. Presumptive Arcobacter strains were obtained by enriching samples in Oxoid Arcobacter enrichment broth (AEB) followed by the filtration of enrichment product through 0.45-μm pore size membrane filters laid onto non-selective blood at 30°C under microaerophilic conditions. Molecular identification of Arcobacter cryaerophilus and A. butzleri was performed by Polymerase chain reaction (PCR) amplification of the 16S rRNA gene, followed by sequencing. The disc diffusion method was used to determine the antimicrobial susceptibility of isolates. Targeted resistance and virulence genes were detected using multiplex PCR. RESULTS The results show a low recovery rate of Arcobacter spp. in milk. Arcobacters were found in all types of milk, except raw camel milk, but were absent from all dairy products. Arcobacter butzleri was the predominant species in raw milk. Detection of virulence genes shows that all virulence genes targeted were found among A. butzleri, and six (cadF, cj1349, irgA, mviN, pldA, tlyA) were found among A. cryaerophilus. All A. butzleri strains and some A. cryaerophilus strains isolated from milk were resistant to amoxicillin-clavulanic acid and tetracycline. All A. cryaerophilus isolates from milk were susceptible to gentamycin, streptomycin, erythromycin and ciprofloxacin. The distribution of resistance genes in Arcobacter strains in milk shows that all isolates carried tet(O) and blaOXA-61 genes. CONCLUSIONS In conclusion, the results indicate a low recovery rate of Arcobacter spp. in milk and milk products. However, a significant number of Arcobacter strains with putative virulence genes may be potential pathogens for humans and an overall increase in Arcobacter resistance to first-line antibiotics. These results highlight the need for regular surveillance of Arcobacter strains in milk and milk products in Iran.
Collapse
Affiliation(s)
- Abazar Lameei
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Amir Shakerian
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hassan Momtaz
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
5
|
Prevalence, antimicrobial susceptibility and virulence gene profiles of Arcobacter species isolated from human stool samples, foods of animal origin, ready-to-eat salad mixes and environmental water. Gut Pathog 2021; 13:76. [PMID: 34930425 PMCID: PMC8686351 DOI: 10.1186/s13099-021-00472-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Members of the genus Arcobacter are considered as emerging zoonotic food and waterborne pathogens that cause gastroenteritis and bacteremia in humans. However, the potential risk that Arcobacter species pose to public health remains unassessed in various countries, including Baltic states. Therefore, the aim of this study was to determine the prevalence, antimicrobial susceptibility and presence of putative virulence genes of Arcobacter isolates recovered from humans, food products and environmental water in Lithuania. Results A total of 1862 samples were collected and examined from 2018 to 2020 in the city of Kaunas. Overall, 11.2% (n = 208) of the samples were positive for the presence of Arcobacter spp. The highest prevalence was detected in chicken meat (36%), followed by environmental water (28.1%), raw cow milk (25%), ready-to-eat salad mixes (7.1%) and human stool (1.7%). A. butzleri was the most frequently isolated species (n = 192; 92.3%), followed by A. cryaerophilus (n = 16; 7.7%). Arcobacter spp. antimicrobial susceptibility testing revealed unimodally distributed aggregated minimal inhibitory concentrations (MICs) for gentamicin, tetracycline, ciprofloxacin, ampicillin and erythromycin. However, a bimodal distribution for azithromycin was found with 96.2% of determined MICs above the epidemiological cut-off value (ECOFF) defined for Campylobacter jejuni (0.25 µg/ml). Majority of the Arcobacter isolates (n = 187; 89.9%) showed high susceptibility to ciprofloxacin with MICs below or equal to the ECOFF value of 0.5 µg/ml. The putative virulence genes cadF (100%), ciaB (100%), cj1349 (99%), tlyA (99%), mviN (97.9%) and pldA (95.8%) were the predominant genes detected among A. butzleri isolates. In contrast, the mviN and ciaB genes were present in all, whereas cj1349 (12.5%), tlyA (25%) and hecA (12.5%) were only detected in few A. cryaerophilus isolates. Conclusions Our results demonstrate that food products and environmental water in Lithuania are frequently contaminated with Arcobacter spp. that carry multiple putative virulence genes. Furthermore, A. butzleri were isolated from 1.7% of inpatients. Fluoroquinolones and aminoglycosides were found to be more effective against Arcobacter in comparison to other antimicrobial agents. However, further studies are needed to determine the pathogenic mechanisms and factors that facilitate the spread of Arcobacter infections.
Collapse
|
6
|
Chieffi D, Fanelli F, Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr Rev Food Sci Food Saf 2020; 19:2071-2109. [PMID: 33337088 DOI: 10.1111/1541-4337.12577] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Arcobacter butzleri, recently emended to the Aliarcobacter butzleri comb. nov., is an emerging pathogen causing enteritis, severe diarrhea, septicaemia, and bacteraemia in humans and enteritis, stillbirth, and abortion in animals. Since its recognition as emerging pathogen on 2002, advancements have been made in elucidating its pathogenicity and epidemiology, also thanks to advent of genomics, which, moreover, contributed in emending its taxonomy. In this review, we provide an overview of the up-to-date taxonomy, ecology, and pathogenicity of this emerging pathogen. Moreover, the implication of A. butzleri in the safety of foods is pinpointed, and culture-dependent and independent detection, identification, and typing methods as well as strategies to control and prevent the survival and growth of this pathogen are provided.
Collapse
Affiliation(s)
- Daniele Chieffi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| |
Collapse
|
7
|
Fusco V, Chieffi D, Fanelli F, Logrieco AF, Cho G, Kabisch J, Böhnlein C, Franz CMAP. Microbial quality and safety of milk and milk products in the 21st century. Compr Rev Food Sci Food Saf 2020; 19:2013-2049. [DOI: 10.1111/1541-4337.12568] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Vincenzina Fusco
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Gyu‐Sung Cho
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | - Jan Kabisch
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | - Christina Böhnlein
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | | |
Collapse
|
8
|
Brückner V, Fiebiger U, Ignatius R, Friesen J, Eisenblätter M, Höck M, Alter T, Bereswill S, Heimesaat MM, Gölz G. Characterization of Arcobacter strains isolated from human stool samples: results from the prospective German prevalence study Arcopath. Gut Pathog 2020; 12:3. [PMID: 31921357 PMCID: PMC6947975 DOI: 10.1186/s13099-019-0344-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023] Open
Abstract
Background Arcobacter constitute emerging food- and waterborne pathogens causing gastroenteritis in humans, but the underlying mechanisms are only incompletely understood. We therefore characterized Arcobacter isolates derived from human stool samples that had been collected during a prospective prevalence study in Germany in vitro. Thirty-six bacterial isolates belonging to the species A. butzleri (n = 24), A. cryaerophilus (n = 10) and A. lanthieri (n = 2) were genotyped by ERIC-PCR, the presence of 10 putative virulence genes was assessed and cytotoxic effects on the human intestinal cell line HT-29/B6 were analyzed applying the WST-assay. Results Genotyping revealed high genetic diversity within the species A. butzleri, A. cryaerophilus and A. lanthieri. Both, A. butzleri and A. lanthieri encoded for a large number of putative virulence genes, while fewer genes were detectable in A. cryaerophilus isolates. Notably, the three cytolethal distending toxin (CDT) genes cdtA, cdtB and cdtC were abundant in both A. lanthieri isolates. Furthermore, all A. butzleri and A. lanthieri, but only one of the A. cryaerophilus isolates exerted cytotoxic effects. Conclusions Our study provides evidence for the abundance of putative virulence genes in Arcobacter isolates and prominent cytotoxic effects of A. butzleri and A. lanthieri in vitro. The presence of cdtA, cdtB, cdtC in A. lanthieri points towards CDT secretion as potential mechanism underlying cytotoxicity as opposed to A. butzleri. However, the association of the Arcobacter virulence factors detected and human morbidity should be addressed in future studies.
Collapse
Affiliation(s)
- Vanessa Brückner
- 1Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ulrike Fiebiger
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ralf Ignatius
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Labor 28, Berlin, Germany
| | | | | | | | - Thomas Alter
- 1Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Greta Gölz
- 1Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Traversa A, Gallina S, Martucci F, Boteva C, Baioni E, Maurella C, Chiavacci L, Benvenuto E, Ferrero I, Ferrero E, Giacometti F, Piva S, Chiesa F, Bianchi DM, Serraino A, Decastelli L. Arcobacter spp. in raw milk from vending machines in Piedmont and occurrence of virulence genes in isolates. Ital J Food Saf 2019; 8:7859. [PMID: 31897394 PMCID: PMC6912143 DOI: 10.4081/ijfs.2019.7859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Arcobacter spp. has been recognized as an emerging foodborne pathogen and a hazard to human health. In the dairy chain, it has been isolated from different sources, nevertheless data on Arcobacter occurrence in raw milk provided by vending machines are few. This study aimed to identify potentially pathogenic Arcobacter spp. in raw milk intended for human consumption sold through vending machines located in Piedmont. In an 8-month period, 37 raw milk samples were collected from 24 dairy farms: 12 (32,4%) were collected directly in farm from bulk tank milk and 25 (67,6%) from vending machines. Eight (21,6%) out of the 37 milk samples and 7 (29,2%) out of the 24 dairy farms were positive for Arcobacter spp. by culture examination. Four (16%) out of the 25 samples from vending machines and 4 (33,3%) out of the 12 samples from bulk tank milk were positive. All 8 isolates were identified as A. butzleri both by MALDI-TOF MS and multiplex end-point PCR. According to the detection of virulence genes, a total of four Patho-types were highlighted: 5 isolates in P-type 1 and only one isolate for each of the P-types 2-3-4. A. butzleri isolates carrying encoding virulence factors genes were isolated from raw milk intended for human consumption: these findings strengthen the compulsory consumption after boiling as required by current legislation and suggest the need of enlarging the analytical investigations to other microorganisms not yet included in the food safety criteria.
Collapse
Affiliation(s)
- Amaranta Traversa
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Silvia Gallina
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Francesca Martucci
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Cvetelina Boteva
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Elisa Baioni
- Epidemiology and Epidemiological Observatory complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Cristiana Maurella
- Epidemiology and Epidemiological Observatory complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Laura Chiavacci
- Epidemiology and Epidemiological Observatory complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Elisa Benvenuto
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Irene Ferrero
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Elena Ferrero
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Daniela Manila Bianchi
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia
| | - Lucia Decastelli
- Food Control and Production Hygiene complex Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino
| |
Collapse
|
10
|
Parisi A, Capozzi L, Bianco A, Caruso M, Latorre L, Costa A, Giannico A, Ridolfi D, Bulzacchelli C, Santagada G. Identification of virulence and antibiotic resistance factors in Arcobacter butzleri isolated from bovine milk by Whole Genome Sequencing. Ital J Food Saf 2019; 8:7840. [PMID: 31236384 PMCID: PMC6562252 DOI: 10.4081/ijfs.2019.7840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Arcobacter butzleri is a pathogenic aerobic bacterium responsible for diarrhea and septicemia in humans. It is frequently isolated from food products of animal origin, including milk and dairy products. To data, few reports are currently available on the genetic characteristics and virulence profiles of A. butzleri. The aim of this study was to investigate the genetic diversity and to characterize the virulence and antibiotic resistance profiles of 10 A. butzleri strains isolated from bovine milk samples by Whole Genome Sequence (WGS). Multi-Locus Sequence Typing (MLST) revealed that three isolates belonged to the ST66, two to the ST420 and the remaining five strains to the ST627, ST629, ST630, ST633 and ST637, respectively. The 100% of the strains carried cadF, pldA, ciaB, cj1349, mviN and tlyA virulence factors genes; 60% iroE; 50% irgA; 10% hecB. Resistome prediction showed a multidrug resistance: 100% of isolates resulted resistant to fluoroquinolones and tetracycline; 90% of strains to rifampicin and cephalosporins and a minor percentage to other antibiotics. Furthermore, the 50% of strains harbored four mutations in Mycobacterium tuberculosis katG gene conferring resistance to isoniazid. The study provided interesting data on the virulence characteristics and on the genetic endowment related to the antimicrobial resistance of A. butzleri isolates from milk. The determination of the STs also added information concerning the genetic variability of this microorganism. To date, a very limited number of studies have been published on the typing of A. butzleri using WGS, so this paper proposes an innovative methodological approach that allows a rapid and complete characterization of pathogenic microorganisms.
Collapse
Affiliation(s)
- Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia
| | - Loredana Capozzi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia
| | - Angelica Bianco
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia
| | - Marta Caruso
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia
| | - Laura Latorre
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia
| | - Antonella Costa
- Experimental Zooprophylactic Institute of Sicily, Palermo, Italy
| | - Anna Giannico
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia
| | - Donato Ridolfi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia
| | | | | |
Collapse
|
11
|
Occurrence of virulence-associated genes in Arcobacter butzleri and Arcobacter cryaerophilus isolates from foodstuff, water, and clinical samples within the Czech Republic. Folia Microbiol (Praha) 2018; 64:25-31. [PMID: 29936647 DOI: 10.1007/s12223-018-0628-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/19/2018] [Indexed: 01/22/2023]
Abstract
Bacteria of the Arcobacter (A.) genus, originating mainly from food and water, are dreaded germs for humans as well as animals. However, the virulence of these bacteria has not been fully elucidated yet. This study looked at the occurrence of eight virulence-associated factors (ciaB, cj1349, pldA, irgA, hecA, tlyA, mviN, hecB) in a total of 80 isolates of Arcobacter butzleri and 22 isolates of A. cryaerophilus. The isolates were derived from food, water, and clinical samples. A polymerase chain reaction using specific primers was used to detect these virulence-associated genes. The presence of all genes in the isolates of A. butzleri (98.8% ciaB, 95.0% cj1349, 98.8% pldA, 22.5% irgA, 31.3% hecA, 95.0% tlyA, 97.5% mviN, 38.8% hecB) and A. cryaerophilus (95.5% ciaB, 0.0% cj1349, 9.1% pldA, 0.0% irgA, 0.0% hecA, 31.8% tlyA, 90.9% mviN, 0.0% hecB) was monitored. Among the tested isolates, there were 13 isolates (12.7%) of A. butzleri, in which the presence of all eight virulence-associated genes was recorded in the genome. In contrast, in one A. cryaerophilus strain, none of the observed genes were detected. The presence of ciaB and mviN genes was significantly more frequent in A. cryaerophilus isolates than other genes (P < 0.05). In general, more virulence-associated genes have been detected in A. butzleri isolates compared to A. cryaerophilus. The most common gene combination (ciaB, cj1349, pldA, tlyA, mviN) was detected in case of 39 isolates. In 50.0% of A. butzleri isolates derived from clinical samples, all eight virulence-associated genes were significantly more frequently detected (P < 0.05). The tlyA gene occurred significantly more frequent in A. butzleri isolates from meat and water samples and irgA and hecB genes in clinical samples. Therefore, our study provides information about occurrence of virulence-associated genes in genome of Arcobacter isolates. These findings could be hazardous to human health, because the presence of virulence-associated genes is the assumption for potential dangerousness of these bacteria. Our results indicate high incidence of virulence-associated genes in Arcobacter genomes and hence potentially pathogenic properties of the studied strains.
Collapse
|