1
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
2
|
de Assis DCS, da Silva TML, Brito RF, da Silva LCG, Lima WG, Brito JCM. Shiga toxin-producing Escherichia coli (STEC) in bovine meat and meat products over the last 15 years in Brazil: A systematic review and meta-analysis. Meat Sci 2020; 173:108394. [PMID: 33316706 DOI: 10.1016/j.meatsci.2020.108394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/21/2023]
Abstract
We conducted a systematic review and meta-analysis to determine the rate of contamination in bovine meat and meat products with Shiga toxin-producing Escherichia coli (STEC) in Brazil over the last fifteen years. Data were obtained from online databases in February 2020, and 25 papers were selected from 1036 articles identified in the literature search and 13 articles from gray literature, totaling 4286 samples analyzed. The overall rate of STEC was estimated to be 1% in Brazil. The highest rate (9%) was observed in Mato Grosso, followed by Rio Grande do Sul (1%), Goiás (1%), and São Paulo (1%). Regarding the sample type analyzed, hot carcasses had the highest rate (8%) of positive samples for STEC, followed by cold carcasses (2%) and beef samples (1%). As the available data were concentrated in the São Paulo state, the findings of this meta-analysis reveal the need for further studies in Brazil to allow better risk assessment and prevention of human STEC infections.
Collapse
Affiliation(s)
- Débora Cristina Sampaio de Assis
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thaís Michelle Liziere da Silva
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rommel Furst Brito
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
3
|
G M Gonzalez A, M F Cerqueira A. Shiga toxin-producing Escherichia coli in the animal reservoir and food in Brazil. J Appl Microbiol 2019; 128:1568-1582. [PMID: 31650661 DOI: 10.1111/jam.14500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/18/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathotype associated with human gastrointestinal disease that may progress to severe complications. Ruminants, especially cattle, are the main reservoirs of STEC contaminating the environment and foods of animal or vegetable origin. Besides Shiga toxin, other virulence factors are involved in STEC virulence. O157:H7 remains the most frequent serotype associated with disease. In Brazil, the prevalence of STEC reaches values as high as 90% in cattle and 20% in meat products which may impact the Brazilian food export trade. However, only few reports are related to human disease. The stx1 gene prevails in cattle, whereas the stx2 gene is more frequent in food. Several STEC serotypes have been isolated from cattle and food in Brazil, including the O157:H7, O111:NT, NT:H19 as well as O26 and O103 serogroups. O113: H21 STEC strains are frequent in ruminants and foods but with no report in human disease. The virulence profile of Brazilian STEC strains from cattle and food suggests a pathogenic potential to humans, although some differences with clinical strains have been detected. Further studies, employing recent and more discriminative techniques are in need to better clarify their virulence potential.
Collapse
Affiliation(s)
- Alice G M Gonzalez
- Departamento de Bromatologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Aloysio M F Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
4
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
5
|
Biofilm Formation Potential of Heat-Resistant Escherichia coli Dairy Isolates and the Complete Genome of Multidrug-Resistant, Heat-Resistant Strain FAM21845. Appl Environ Microbiol 2017; 83:AEM.00628-17. [PMID: 28550056 PMCID: PMC5514686 DOI: 10.1128/aem.00628-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays.IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption.
Collapse
|