1
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
2
|
Li Y, Gao J, Lv J, Lambo MT, Wang Y, Wang L, Zhang Y. Replacing soybean meal with high-oil pumpkin seed cake in the diet of lactating Holstein dairy cows modulated rumen bacteria and milk fatty acid profile. J Dairy Sci 2023; 106:1803-1814. [PMID: 36710188 DOI: 10.3168/jds.2022-22503] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/22/2022] [Indexed: 01/30/2023]
Abstract
This research aimed to investigate the effects of replacing soybean meal with high-oil pumpkin seed cake (HOPSC) on ruminal fermentation, lactation performance, milk fatty acid, and ruminal bacterial community in Chinese dairy cows. Six multiparous Chinese Holstein cows at 105.50 ± 5.24 d in milk (mean ± standard deviation) and 36.63 ± 0.74 kg/d of milk yield were randomly allocated, in a 3 × 3 Latin square design, to 3 dietary treatments in which HOPSC replaced soybean meal. Group 1 was the basal diet with no HOPSC (0HOPSC); group 2 was a 50% replacement of soybean meal with HOPSC and dried distillers grains with solubles (DDGS; 50HOPSC), and group 3 was a 100% replacement of soybean meal with HOPSC and DDGS (100HOPSC). We found no difference in the quantity of milk produced or milk composition among the 3 treatment groups. Feed efficiency tended to increase linearly as more HOPSC was consumed. In addition, rumen fermentation was not influenced when soybean meal was replaced with HOPSC and DDGS; the relative abundance of ruminal bacteria at the phylum and genus levels was altered. We also observed that as the level of HOPSC supplementation increased, the relative abundance of Firmicutes and Tenericutes linearly increased, whereas that of Bacteroidetes decreased. However, with increasing HOPSC supplementation, the relative abundance of Ruminococcus decreased linearly at the genus level in the rumen, and the relative abundance of Prevotella showed a linear downward tendency. Changes in dietary composition and rumen bacteria had no significant effect on the fatty acid composition of milk. In conclusion, our results indicated that replacing soybean meal with a combination of HOPSC and DDGS can meet the nutritional needs of high-yielding dairy cows without adversely affecting milk yield and quality; however, the composition of rumen bacteria could be modified. Further study is required to investigate the effects of long-term feeding of HOPSC on rumen fermentation and performance of dairy cows.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jianxu Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingyi Lv
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Liang Wang
- Research Institute of Applied Technologies, Honghe University, Mengzi 661199, China.
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Smith PE, Kelly AK, Kenny DA, Waters SM. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Front Vet Sci 2022; 9:958340. [PMID: 36619952 PMCID: PMC9817038 DOI: 10.3389/fvets.2022.958340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.
Collapse
Affiliation(s)
- Paul E. Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland,*Correspondence: Paul E. Smith
| | - Alan K. Kelly
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Sinéad M. Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| |
Collapse
|
4
|
Lu Q, Luo Q, Li J, Wang X, Ban C, Qin J, Tian Y, Tian X, Chen X. Evaluation of the Chemical Composition, Bioactive Substance, Gas Production, and Rumen Fermentation Parameters of Four Types of Distiller's Grains. Molecules 2022; 27:molecules27186134. [PMID: 36144867 PMCID: PMC9504821 DOI: 10.3390/molecules27186134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Distiller’s grain is rich in natural active ingredients and can be used as an excellent antioxidant feed for goats. The current study aimed to assess the feeding value of four different types of distiller’s grains with an in vitro gas production trial. The chemical composition, total phenols, total anthocyanins, dry matter degradability, methane, hydrogen, and rumen fermentation parameters were evaluated. The results indicated that red distiller’s grain and glutinous rice distiller’s grain had higher (p < 0.05) levels of crude protein than the other two types. There were significantly (p < 0.05) higher concentrations of dry matter, ether extract, hemicellulose, and total carbohydrate in corn distiller’s grain than in the other three types of distiller’s grain. In addition, red distiller’s grain showed a higher (p < 0.05) gas production rate constant (c) and ruminal outflow rate, as well as higher (p < 0.05) concentrations of total phenol, total anthocyanins and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, than the other three types of distiller’s grains. In contrast, red distiller’s grain displayed the lowest (p < 0.05) immediately soluble fraction (a) and half the time of maximum gas production relative to the other samples. In particular, the levels of methane (%) in white distiller’s grain and glutinous rice distiller’s grain were greater (p < 0.05) than that in red distiller’s grain. Moreover, the ammonia nitrogen content in red distiller’s grain was greater (p < 0.05) than that in white distiller’s grain and corn distiller’s grain. In contrast, red distiller’s grain exhibited a lower (p < 0.05) level of ruminal fluid acetic acid relative to that found in white distiller’s grain and corn distiller’s grain. Taken together, the results showed that red distiller’s grain and glutinous rice distiller’s grain could be used as protein feed, red distiller’s grain had higher levels of total phenols and total anthocyanins and a high DPPH scavenging activity; corn distiller’s grain might be considered as an alternative energy source feed, and white distiller’s grain exhibited higher total gas production.
Collapse
Affiliation(s)
- Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Qingyuan Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiaxuan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chao Ban
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jixiao Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yayuan Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
- Correspondence: or (X.T.); (X.C.)
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: or (X.T.); (X.C.)
| |
Collapse
|
5
|
Adding dried distillers grains with solubles influences the rumen microbiome of meat goats fed lespedeza or alfalfa-based diets. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Durmic Z, Black JL, Martin GB, Vercoe PE. Harnessing plant bioactivity for enteric methane mitigation in Australia. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review provides examples of the utilisation of plant bioactivity to mitigate enteric methane (CH4) emissions from the Australian ruminant production systems. Potential plant-based mitigation strategies that reduce CH4 without major impacts on forage digestibility include the following: (i) low methanogenic tropical and temperate grass, legume and shrub forage species, which offer renewable and sustainable solutions and are easy to adopt, but may have restricted geographical distribution or relatively high costs of establishment and maintenance; (ii) plant-based agricultural by-products including grape marc, olive leaves and fruit, and distiller’s grains that can mitigate CH4 and provide relatively cheap high-nutrient supplements, while offsetting the impact of agricultural waste, but their use may be limited due to unfavourable characteristics such as high protein and water content or cost of transport; (iii) plant extracts, essential oils and pure compounds that are abundant in Australian flora and offer exciting opportunities on the basis of in vitro findings, but require verification in ruminant production systems. The greatest CH4 mitigation potential based on in vitro assays come from the Australian shrubs Eremophila species, Jasminum didymium and Lotus australis (>80% CH4 reduction), tropical forages Desmanthus leptophyllus, Hetropogon contortus and Leucaena leucocephala (~40% CH4 reduction), temperate forages Biserrula pelecinus (70–90% CH4 reduction), perennial ryegrass and white clover (~20% CH4 reduction), and plant extracts or essential oils from Melaleuca ericifolia, B. pelecinus and Leptospermum petersonii (up to 80% CH4 reduction). Further research is required to confirm effectiveness of these plant-based strategies in vivo, determine optimal doses, practical modes of delivery to livestock, analyse benefit–cost ratios and develop pathways to adoption.
Collapse
|
7
|
Gleason CB, Settlage RE, Beckett LM, White RR. Characterizing Effects of Ingredients Differing in Ruminally Degradable Protein and Fiber Supplies on the Ovine Rumen Microbiome Using Next-Generation Sequencing. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.745848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ratio of concentrate to forage within diets is known to alter rumen microbial profiles, but comparatively less information is available on the effect of differing sources of individual nutrients on the microbiome. The objective of this study was to investigate rumen microbial responses to diets composed of protein and fiber sources expected to vary in nutrient degradability. The responses of interest included relative abundances of bacterial taxa as well as estimations of community richness and diversity. Ten ruminally cannulated wethers (Suffolk, Dorset, or Suffolk × Dorset) received four diet treatments consisting of either beet pulp or timothy hay and soybean meal (SBM) or heat-treated soybean meal (HSBM) in a partially replicated 4 × 4 Latin square experiment for 21 days. Timothy hay and beet pulp were expected to provide differing rumen degradabilities of neutral detergent fiber (NDF) while the soybean meals were expected to provide differing rumen degradabilities of crude protein (CP). Solid and liquid samples of rumen contents were collected for microbial DNA isolation and Next-Generation sequencing. Numerous rumen bacterial population shifts were observed due to change in fiber source, with increased abundances (P < 0.05) of fibrolytic populations associated with timothy hay diets compared with beet pulp diets. Conversely, populations of the pectin-degrading genera, Treponema and Lachnospira, increased on the beet pulp treatment (P = 0.015 and P = 0.0049, respectively). Limited impact on bacterial taxa was observed between diets differing in protein source. The Paraprevotellaceae genus YRC22 was observed to increase in abundance on HSBM diets (P = 0.023) and the phylum Spirochaetes tended to be more abundant on SBM than HSBM diets (P = 0.071). Beet pulp decreased rumen bacterial diversity (P = 0.0027) and tended to decrease bacterial species richness (P = 0.051) compared to timothy hay. Our results serve to further underscore the sensitivity of rumen microbes to changes in their preferred substrates, particularly of those associated with fiber degradation.
Collapse
|
8
|
Dankwa AS, Humagain U, Ishaq SL, Yeoman CJ, Clark S, Beitz DC, Testroet ED. Bacterial communities in the rumen and feces of lactating Holstein dairy cows are not affected when fed reduced-fat dried distillers' grains with solubles. Animal 2021; 15:100281. [PMID: 34153603 DOI: 10.1016/j.animal.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
Reduced-fat dried distillers' grains with solubles (RF-DDGSs) are co-products of ethanol production and contain less fat than traditional distillers' grains. The fat in corn is ~91% unsaturated, and it is toxic to rumen microorganisms so it could influence the composition of the rumen microbiome. It has been demonstrated that RF-DDGS is a suitable ration ingredient to support the high-producing dairy cow, and this feedstuff is a promising alternative protein source for lactating dairy cows. The current study aims to better understand the effect of RF-DDGS on the rumen and fecal bacterial composition in lactating dairy cows. Thirty-six multiparous (two or three), mid-lactation Holstein cows (BW = 680 ± 11 kg; 106 ± 27 DIM) were randomly assigned to two groups which were fed a control diet made up of corn, corn silage, and alfalfa hay supplemented with expeller soybean meal or with added RF-DDGS (20% of the DM) containing approximately 6.0% fat. Whole rumen contents (rumen fluid and digesta; esophageal tubing method) and feces (free-catch method) were collected on day 35 of the experimental period, after the 14-d acclimation period. Rumen contents and feces from each cow were used for DNA extraction. The bacterial community composition in rumen and fecal samples was assessed via the 16S rRNA gene by using the Illumina MiSeq sequencing platform. Bacteroidetes, Actinobacteria, and Firmicutes were the most abundant phyla in rumen contents. The fecal microbiota was dominated by the phyla Firmicutes and Bacteroidetes, as well as Actinobacteria and Chloroflexi. RF-DGGS increased bacterial richness, evenness, and Shannon diversity in both rumen and fecal samples and was associated with several taxa that had different abundance in treatment versus control comparisons. The RF-DGGS, however, did not significantly alter the bacterial community in the rumen or feces. In general, these findings demonstrated that dietary inclusion of RF-DDGS did not impose any serious short-term (within 30 days) health or production consequences, as would be expected. With this study, we present further evidence that inclusion of 20% (DM basis) RF-DDGS in the diet of lactating dairy cows can be done without consequence on the microbiome of the rumen.
Collapse
Affiliation(s)
- A S Dankwa
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - U Humagain
- School of Civil and Environmental Engineering, University of Maine, Orono, ME, USA
| | - S L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - C J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA
| | - S Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - D C Beitz
- Department of Animal Sciences, Iowa State University, Ames, IA 50011, USA
| | - E D Testroet
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
9
|
Guo T, Wang ZL, Guo L, Li F, Li F. Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs. Transl Anim Sci 2021; 5:txab065. [PMID: 34179701 PMCID: PMC8221454 DOI: 10.1093/tas/txab065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
The objectives were to evaluate the effects of fiber source and dietary starch level on growth performance, nutrient digestion, rumen parameters, and rumen bacteria in fattening Hu lambs. A total of 360 Hu lambs (BW = 24.72 ± 0.14 kg, 2 months old) were subjected to a 2 × 3 factorial arrangement. Lambs randomly assigned 6 treatments with 6 repetitions (10 lambs per repetition) of each treatment. Six treatments were formulated to include the fiber sources with three starch levels. The experiment lasted a 63 d. The amount of feed, orts, and total feces were sampled on the 42nd day of the experiment. Rumen fluid samples were collected after 2 h of morning feeding on day 56. Rumen contents were collected last day after the selected lambs were slaughtered. Increasing the starch content decreased the digestibility of neutral detergent fiber (NDF, P = 0.005). Increasing the starch level increased the proportions of propionate (P = 0.002) and valerate (P = 0.001) and decreased the proportion of acetate (P < 0.001) and the ratio of acetate to propionate (P = 0.005). The abundance of Fibrobacter succinogenes was affected by an interaction between the fiber source and the starch level (P < 0.001). Fibrobacter succinogenes tended to be greater in lambs fed SH than in lambs fed BP (P = 0.091), which was greater in lambs fed high starch levels than in lambs fed low starch levels (P = 0.014). Increasing the starch level increased Streptococcus bovis abundance (P = 0.029) and decreased total bacteria (P = 0.025). At the genus level, increasing the starch level reduced the abundance of Butyrivibrio_2 (P = 0.020). Nevertheless, the final body weight (BW) and acid detergent fiber (ADF) digestibility were greater (P < 0.01) in lambs fed soybean hull (SH) than in lambs fed BP. The proportion of butyrate was greater (P = 0.005), while the rumen pH was lower (P = 0.001) in lambs fed beet pulp (BP) than in those fed SH. The abundances of Succiniclasticum, Candidatus_Saccharimonas, Ruminococcus_1, and Christensenellaceae_R-7 were greater in lambs fed SH than in those fed BP (P < 0.050), whereas the abundance of Fibrobacter was lower (P = 0.011). The predominant microbial phyla in all of the groups were Firmicutes, Bacteroidetes, and Fibrobacteres. Changing the starch level for fiber sources mainly changed the rumen community in terms of the phylum and genus abundances. Lambs fed SH with low starch level increased the final BW without affecting total volatile fatty acids (TVFA) concentrations.
Collapse
Affiliation(s)
- Tongqing Guo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Zhi Lan Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Long Guo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Fei Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| |
Collapse
|
10
|
Shen J, Li Z, Yu Z, Zhu W. Effects of dietary replacement of soybean meal with dried distillers grains with solubles on the microbiota occupying different ecological niches in the rumen of growing Hu lambs. J Anim Sci Biotechnol 2020; 11:93. [PMID: 32939263 PMCID: PMC7487462 DOI: 10.1186/s40104-020-00499-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/16/2020] [Indexed: 11/11/2022] Open
Abstract
Background Diet has a profound impact on the rumen microbiota, and the impact can vary among the different rumen ecological niches (REN). This study investigated the effects of dietary replacement of soybean meal (SBM) with dried distillers grains with solubles (DDGS) on the rumen microbiota occupying different REN of growing Hu lambs. After a 9-week feeding trial, 6 lambs from each dietary treatment (SBM vs. DDGS-based diets) were slaughtered for sample collection. The microbiota of the rumen solid, liquid, and epithelium fractions was examined using amplicon sequencing analysis of bacterial 16S rRNA gene, functional prediction, and qPCR. Results No interaction of dietary protein source (PS) and REN were detected for virtually all the measurements made in this study. The DDGS substitution resulted in very limited influence on bacterial community structure. However, the metabolic pathways predicted from 16S rRNA gene sequences varied greatly between SBM- and DDGS-based diets. The populations of rumen total bacteria, fungi, sulfate-reducing bacteria (SRB), and methanogens were not influenced by DDGS substitution, but the population of protozoa was reduced. The bacterial communities in rumen solid (RS) and liquid (RL) were similar in taxonomic composition but were different in relative abundance of some taxa. In contrast, the bacterial composition and relative abundance of rumen epithelium (RE) were greatly distinct from those of the RS and the RL. In alignment with the bacterial relative abundance, the metabolic pathways predicted from 16S rRNA genes also varied greatly among the different REN. The populations of total bacteria, protozoa, and methanogens attached to the RE were smaller than those in the RS and RL, and the fungal population on the rumen epithelium was smaller than that in the RS but similar to that in the RL. On the contrary, the SRB population on the RE was greater than that in the RS and RL. Conclusions Substitution of SBM with DDGS had greater impact to the protozoa than to the other microbes, and the microbial community structure and functions at different REN are distinct and niche-adapted.
Collapse
Affiliation(s)
- Junshi Shen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhipeng Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China.,Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
11
|
Smith PE, Waters SM, Kenny DA, Boland TM, Heffernan J, Kelly AK. Replacing Barley and Soybean Meal With By-products, in a Pasture Based Diet, Alters Daily Methane Output and the Rumen Microbial Community in vitro Using the Rumen Simulation Technique (RUSITEC). Front Microbiol 2020; 11:1614. [PMID: 32793146 PMCID: PMC7387412 DOI: 10.3389/fmicb.2020.01614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 01/04/2023] Open
Abstract
Plant based by-products (BP) produced from food and bioethanol industries are human inedible, but can be recycled into the global food chain by ruminant livestock. However, limited data is available on the methanogenesis potential associated with supplementing a solely BP formulated concentrate to a pastoral based diet. Therefore the objective of this in vitro study was to investigate the effects of BP inclusion rate (in a formulated concentrate) to a pasture based diet on dietary digestibility, rumen fermentation patterns, methane production and the prokaryotic microbial community composition. Diets consisted of perennial ryegrass and one of two supplementary concentrates, formulated to be isonitrogenous (16% CP) and isoenergetic (12.0 MJ/ME/kg), containing either 35% BP, barley and soybean meal (BP35) or 95% BP (BP95) offered on a 50:50 basis, however, starch, NDF and fat content varied. The BPs, included in equal proportions on a DM basis, were soyhulls, palm kernel expeller and maize dried distillers grains. The BP35 diet had greater (P < 0.05) digestibility of the chemical constituents DM, OM, CP, NDF, ADF. Greater total VFA production was seen in the BP35 diet (P < 0.05). Daily methane production (mmol/day; +22.7%) and methane output per unit of total organic matter digested (MPOMD; +20.8%) were greatest in the BP35 diet (P < 0.01). Dietary treatment influenced microbial composition (PERMANOVA; P = 0.023) with a greater relative abundance of Firmicutes (adj P < 0.01) observed in the BP35. The Firmicutes:Bacteroidetes ratio was significantly reduced in the BP95 diet (P < 0.01). The relative proportions of Proteobacteria (adj P < 0.01), Succinivibrionaceae (adj P < 0.03) and Succinivibrio (adj P = 0.053) increased in the BP95 diet. The abundance of Proteobacteria was found to be negatively associated with daily methane production (rs, −0.71; P < 0.01) and MPOMD (rs, −0.65; P < 0.01). Within Proteobacteria, the relationship of methane production was maintained with the mean abundance of Succinivibrio (rs, −0.69; P < 0.01). The abundance of the Firmicutes phyla was found to be positively correlated with both daily methane production (rs, 0.79; P < 0.001) and MPOMD (rs, 0.75; P < 0.01). Based on in vitro rumen simulation data, supplementation of an exclusively BP formulated concentrate was shown to reduce daily methane output by promoting a favorable alteration to the rumen prokaryotic community.
Collapse
Affiliation(s)
- Paul E Smith
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland.,Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - Sinéad M Waters
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - David A Kenny
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland.,Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - Tommy M Boland
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| | - John Heffernan
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| | - Alan K Kelly
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Castillo-Lopez E, Haselmann A, Petri RM, Knaus W, Zebeli Q. Evaluation of fecal fermentation profile and bacterial community in organically fed dairy cows consuming forage-rich diets with different particle sizes. J Dairy Sci 2020; 103:8020-8033. [PMID: 32600769 DOI: 10.3168/jds.2019-18036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Organic cattle farming encourages the use of forage-rich diets, and the reduction of particle size has been suggested as an approach to improve forage utilization and enhance nutrient intake of cows. However, reducing forage particle size increases passage rate, as well as the flow of potentially fermentable nutrients out of the rumen, and the consequences for hindgut fermentation have not been evaluated yet. This study evaluated the effects of decreasing dietary forage particle size on the fecal short-chain fatty acid (SCFA) profile and the bacterial community structure of dairy cows fed forage-based rations. Twenty-one organically fed lactating Holstein cows (4 primiparous and 17 multiparous; mean and standard deviation 703 ± 65 kg body weight, 135 ± 104 days in milk) were divided into 2 groups and fed 1 of 2 diets for 34 d. Diets contained 20% concentrate and 80% forage (dry matter basis), and were fed either as a control with a forage geometric mean particle size of 52 mm (CON; 11 cows) or as a diet with the forage particle size reduced to a geometric mean size of 7 mm (RED; 10 cows). Fecal samples were collected at the end of the experiment, and samples were immediately frozen at -20°C. Samples were analyzed for SCFA, and the fecal bacterial community was evaluated using 16S rRNA sequencing. Data showed that the concentration of total SCFA was not affected by treatment, but the proportion of propionate, a key glucogenic precursor in cattle, tended to be greater for RED (13.3 and 13.8 ± 0.1%, respectively). The predominant bacterial phyla, including Firmicutes (58.0 ± 0.7%), Bacteroidetes (26.9 ± 0.4%), and Verrucomicrobia (4.0 ± 0.4%), were not affected by forage particle size. Family Lachnospiraceae increased in relative abundance when the RED diet was fed (12.1 and 13.9 ± 0.5% for CON and RED, respectively), and genera Acetitomaculum (1.1 and 1.8 ± 0.2%), Turicibacter (0.7 and 0.9 ± 0.1%), and Ruminobacter (0.1 and 0.4 ± 0.1%) increased in relative abundance when RED was fed. In addition, relative abundance of some fecal bacterial taxa was correlated with major fecal SCFA and pH. Reducing the particle size of forages, from 52 to 7 mm geometric mean particle size, maintained fecal concentration of total SCFA and tended to enhance propionate concentration, without risk of dysbiosis. Thus, results suggest that reduction of forage particle size represents an effective approach to optimizing forage utilization while maintaining hindgut fermentation and fecal bacterial diversity in dairy cows fed forage-rich diets.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| | - Andreas Haselmann
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Renee M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Wilhelm Knaus
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| |
Collapse
|
13
|
Min BR, Castleberry L, Allen H, Parker D, Waldrip H, Brauer D, Willis W. Associative effects of wet distiller's grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes1. J Anim Sci 2020; 97:4668-4681. [PMID: 31603200 DOI: 10.1093/jas/skz317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Two sets of in vitro rumen fermentation experiments were conducted to determine effects of diets that included wet distiller's grains plus solubles (WDGS) and tannin-rich peanut skin (PS) on the in vitro digestibility, greenhouse gas (GHG) and other gas emissions, fermentation rate, and microbial changes. The objectives were to assess associative effects of various levels of PS or WDGS on the in vitro digestibility, GHG and other gas emissions, fermentation rate, and microbial changes in the rumen. All gases were collected using an ANKOM Gas Production system for methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O), and hydrogen sulfide (H2S) analyses. Cumulative ruminal gas production was determined using 250 mL ANKOM sampling bottles containing 50 mL of ruminal fluid (pH 5.8), 40 mL of artificial saliva (pH 6.8), and 6 g of mixed diets after a maximum of 24 h of incubation. Fermenters were flushed with CO2 gas and held at 39 °C in a shaking incubator for 24 h. Triplicate quantitative real-time polymerase chain reaction (qPCR) analyses were conducted to determine microbial diversity. When WDGS was supplied in the diet, in the absence of PS, cumulative CH4 production increased (P < 0.05) with 40% WDGS. In the presence of PS, production of CH4 was reduced but the reduction was less at 40% WDGS. In the presence of PS, ruminal lactate, succinate, and acetate/propionate (A/P) ratio tended to be less with a WDGS interaction (P < 0.01). In the presence of PS and with 40% WDGS, average populations of Bacteroidetes, total methanogens, Methanobrevibacter sp. AbM4, and total protozoa were less. The population of total methanogens (R2 = 0.57; P < 0.01), Firmicutes (R2 = 0.46: P < 0.05), and Firmicutes/Bacteroidetes (F/B) ratio (R2 = 0.46; P < 0.03) were strongly correlated with ruminal CH4 production. Therefore, there was an associative effect of tannin-rich PS and WDGS, which suppressed methanogenesis both directly and indirectly by modifying populations of ruminal methanogens.
Collapse
Affiliation(s)
- Byeng Ryel Min
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX
| | - Lana Castleberry
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX
| | - Heather Allen
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Ames, IA
| | - David Parker
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX
| | - Heidi Waldrip
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX
| | - David Brauer
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX
| | - William Willis
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX
| |
Collapse
|
14
|
Castillo-Lopez E, Moats J, Aluthge ND, Ramirez Ramirez HA, Christensen DA, Mutsvangwa T, Penner GB, Fernando SC. Effect of partially replacing a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows. J Appl Microbiol 2017; 124:42-57. [PMID: 29112793 DOI: 10.1111/jam.13630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 11/26/2022]
Abstract
AIMS The effects of partial replacement of a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows were evaluated. METHODS AND RESULTS Treatments fed were CONT, a normal diet that included barley silage, alfalfa hay and a barley-based concentrate that contained no flaxseed or faba beans; FLAX, inclusion of a nonextruded flaxseed-based product containing 55·0% flaxseed, 37·8% field peas and 6·9% alfalfa; EXT, similar to FLAX, but the product was extruded and EXTT, similar to FLAX, but product was extruded and field peas were replaced by high-tannin faba beans. The rumen bacterial population was evaluated by utilizing 16S rRNA gene sequencing. Most abundant phyla, families and genera were unaffected. However, some taxa were affected; for example, unsaturated fatty acid content was negatively correlated with Clostridiaceae, and tannin content was negatively correlated with BS11 and Paraprevotellaceae. CONCLUSIONS Predominant rumen bacterial taxa were not affected, but the abundance of some taxa found in lower proportions shifted, possibly due to sensitivity to unsaturated fatty acids or tannins. SIGNIFICANCE AND IMPACT OF THE STUDY Flaxseed-based products were effective for partially replacing barley-based concentrate in rations of lactating dairy cows. No negative effects of these products were observed on the abundance of predominant rumen bacterial taxa, with only minor shifts in less abundant bacteria.
Collapse
Affiliation(s)
- E Castillo-Lopez
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - J Moats
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - N D Aluthge
- Food Science and Technology Department, University of Nebraska, Lincoln, NE, USA
| | | | - D A Christensen
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - T Mutsvangwa
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - G B Penner
- Department of Animal & Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - S C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|