1
|
Siddiqui R, Akbar N, Soares NC, Al-Hroub HM, Semreen MH, Maciver SK, Khan NA. Mass spectrometric analysis of bioactive conditioned media of bacteria isolated from reptilian gut. Future Sci OA 2023; 9:FSO861. [PMID: 37180607 PMCID: PMC10167718 DOI: 10.2144/fsoa-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Aim To determine whether selected gut bacteria of crocodile exhibit antibacterial properties. Materials & methods Two bacteria isolated from Crocodylus porosus gut were used, namely: Pseudomonas aeruginosa and Aeromonas dhakensis. Conditioned media were tested against pathogenic bacteria and metabolites were analyzed using liquid chromatography-mass spectrometry. Results & conclusion Antibacterial assays revealed that conditioned media showed potent effects against pathogenic Gram-positive and Gram-negative bacteria. LC-MS revealed identity of 210 metabolites. The abundant metabolites were, N-Acetyl-L-tyrosine, Acetaminophen, Trans-Ferulic acid, N, N-Dimethylformamide, Pyrocatechol, Cyclohexanone, Diphenhydramine, Melatonin, Gamma-terpinene, Cysteamine, 3-phenoxypropionic acid, Indole-3-carbinol, Benzaldehyde, Benzocaine, 2-Aminobenzoic acid, 3-Methylindole. These findings suggest that crocodile gut bacteria are potential source of novel bioactive molecules that can be utilized as pre/post/antibiotics for the benefit of human health.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts & Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Noor Akbar
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nelson Cruz Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamza Mohammad Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammad Harb Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
2
|
Pradhan G, Engsontia P. Diversity of the Antimicrobial Peptide Genes in Collembola. INSECTS 2023; 14:215. [PMID: 36975900 PMCID: PMC10051947 DOI: 10.3390/insects14030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Multidrug-resistant bacteria are a current health crisis threatening the world's population, and scientists are looking for new drugs to combat them. Antimicrobial peptides (AMPs), which are part of the organism's innate immune system, are a promising new drug class as they can disrupt bacterial cell membranes. This study explored antimicrobial peptide genes in collembola, a non-insect hexapod lineage that has survived in microbe-rich habitats for millions of years, and their antimicrobial peptides have not been thoroughly investigated. We used in silico analysis (homology-based gene identification, physicochemical and antimicrobial property prediction) to identify AMP genes from the genomes and transcriptomes of five collembola representing three main suborders: Entomobryomorpha (Orchesella cincta, Sinella curviseta), Poduromorpha (Holacanthella duospinosa, Anurida maritima), and Symphypleona (Sminthurus viridis). We identified 45 genes belonging to five AMP families, including (a) cysteine-rich peptides: diapausin, defensin, and Alo; (b) linear α-helical peptide without cysteine: cecropin; (c) glycine-rich peptide: diptericin. Frequent gene gains and losses were observed in their evolution. Based on the functions of their orthologs in insects, these AMPs potentially have broad activity against bacteria, fungi, and viruses. This study provides candidate collembolan AMPs for further functional analysis that could lead to medicinal use.
Collapse
Affiliation(s)
- Goma Pradhan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Patamarerk Engsontia
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
3
|
Karthik Y, Ishwara Kalyani M, Krishnappa S, Devappa R, Anjali Goud C, Ramakrishna K, Wani MA, Alkafafy M, Hussen Abduljabbar M, Alswat AS, Sayed SM, Mushtaq M. Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove Glutamicibacter mysorens. Front Microbiol 2023; 14:1096826. [PMID: 36876075 PMCID: PMC9982118 DOI: 10.3389/fmicb.2023.1096826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
The Glutamicibacter group of microbes is known for antibiotic and enzyme production. Antibiotics and enzymes produced by them are important in the control, protection, and treatment of chronic human diseases. In this study, the Glutamicibacter mysorens (G. mysorens) strain MW647910.1 was isolated from mangrove soil in the Mangalore region of India. After optimization of growth conditions for G. mysorens on starch casein agar media, the micromorphology of G. mysorens was found to be spirally coiled spore chain, each spore visualized as an elongated cylindrical hairy appearance with curved edges visualized through Field Emission Scanning Electron Microscopy (FESEM) analysis. The culture phenotype with filamentous mycelia, brown pigmentation, and ash-colored spore production was observed. The intracellular extract of G. mysorens characterized through GCMS analysis detected bioactive compounds reported for pharmacological applications. The majority of bioactive compounds identified in intracellular extract when compared to the NIST library revealed molecular weight ranging below 1kgmole-1. The Sephadex G-10 could result in 10.66 fold purification and eluted peak protein fraction showed significant anticancer activity on the prostate cancer cell line. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed Kinetin-9-ribose and Embinin with a molecular weight below 1 kDa. This study showed small molecular weight bioactive compounds produced from microbial origin possess dual roles, acting as antimicrobial peptides (AMPs) and anticancer peptides (ACPs). Hence, the bioactive compounds produced from microbial origin are a promising source of future therapeutics.
Collapse
Affiliation(s)
- Yalpi Karthik
- Department of Studies and Research in Microbiology, Mangalore University, Mangalore, Karnataka, India
| | - Manjula Ishwara Kalyani
- Department of Studies and Research in Microbiology, Mangalore University, Mangalore, Karnataka, India
| | - Srinivasa Krishnappa
- Department of Studies and Research in Biochemistry, Mangalore University, Mangalore, Karnataka, India
| | - Ramakrishna Devappa
- Dr. C.D Sagar Centre for Life Sciences, Biotechnology Department, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bengaluru, India
| | - Chengeshpur Anjali Goud
- Department of Plant Biotechnology, School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - Krishnaveni Ramakrishna
- Department of Studies and Research in Microbiology, Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka, India
| | - Muneeb Ahmad Wani
- Division of Floriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Mohamed Alkafafy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Maram Hussen Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amal S Alswat
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Muntazir Mushtaq
- ICAR-National Bureau of Plant Genetic Resources, Division of Germplasm Evaluation, New Delhi, India.,MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management, Bajhol, Himachal Pradesh, India
| |
Collapse
|
4
|
Zhu D, Ding J, Wang YF, Zhu YG. Effects of Trophic Level and Land Use on the Variation of Animal Antibiotic Resistome in the Soil Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14937-14947. [PMID: 35502923 DOI: 10.1021/acs.est.2c00710] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, it has been increasingly recognized that soil animals are hidden reservoirs of antibiotic resistance genes (ARGs) and play a vital role in spreading ARGs in soil ecosystems. However, little is known about the variation of ARGs among different animals in the soil food web and effects of trophic levels and land uses on them. We characterized the antibiotic resistomes of 495 soil animal samples collected from six regions across China, including two different land uses. A total of 265 ARGs were detected in all animal samples, and relative abundances of ARGs in animals were significantly higher than in soils. In addition, significant differences in ARGs were observed among different animal groups. Twelve common ARGs were identified among all animal groups, accounting for 17.4% of total ARGs abundance. A positive and significant correlation was found between δ15N values (trophic level) and total ARGs abundance in animals. The relative abundance of ARGs in the soil food web from arable land was higher than forest land. Changes in soil antibiotics may indirectly affect animal resistome by altering soil ARGs. This study suggests that the risk of ARGs spreading through the food web is greater in arable than in forest ecosystems.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Yi-Fei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Pathiraja D, Wee J, Cho K, Choi IG. Soil environment reshapes microbiota of laboratory-maintained Collembola during host development. ENVIRONMENTAL MICROBIOME 2022; 17:16. [PMID: 35382887 PMCID: PMC8981701 DOI: 10.1186/s40793-022-00411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Collembola are soil-dwelling arthropods that play a key role in the soil ecosystem. Allonychiurus kimi (Lee) (Collembola: Onychiuridae) was isolated from the natural environment and has been maintained for 20 years under laboratory conditions. Though the morphological and physiological features of A. kimi are being widely used to evaluate the impact of pesticides and heavy metals on the soil ecosystem, variations observed in these features might be on account of its microbiota. However, the microbiota composition of the laboratory-maintained A. kimi is undetermined and how the community structure is changing in response to soil environments or interacting with the soil microbiota are still unknown. In this study, we determined the microbiota of laboratory-maintained A. kimi at both adult and juvenile stages and examined how the microbiota of A. kimi is affected by the microbial community in the soil environments. Chryseobacterium, Pandoraea, Sphingomonas, Escherichia-Shigella, and Acinetobacter were the core microbiota of A. kimi. Exposure of the laboratory-maintained A. kimi to different soil microbial communities drove dynamic shifts in the composition of A. kimi microbiota. Microbial association network analysis suggested that gut microbiota of lab-grown A. kimi was affected by exposing to soil microbial community. This study implies that shifts in the bacterial community of adult A. kimi can be utilized as an indicator to evaluate the soil ecosystem.
Collapse
Affiliation(s)
- Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - June Wee
- BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
6
|
Zhu D, Delgado-Baquerizo M, Ding J, Gillings MR, Zhu YG. Trophic level drives the host microbiome of soil invertebrates at a continental scale. MICROBIOME 2021; 9:189. [PMID: 34544484 PMCID: PMC8454154 DOI: 10.1186/s40168-021-01144-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Increasing our knowledge of soil biodiversity is fundamental to forecast changes in ecosystem functions under global change scenarios. All multicellular organisms are now known to be holobionts, containing large assemblages of microbial species. Soil fauna is now known to have thousands of species living within them. However, we know very little about the identity and function of host microbiome in contrasting soil faunal groups, across different terrestrial biomes, or at a large spatial scale. Here, we examined the microbiomes of multiple functionally important soil fauna in contrasting terrestrial ecosystems across China. RESULTS Different soil fauna had diverse and unique microbiomes, which were also distinct from those in surrounding soils. These unique microbiomes were maintained within taxa across diverse sampling sites and in contrasting terrestrial ecosystems. The microbiomes of nematodes, potworms, and earthworms were more difficult to predict using environmental data, compared to those of collembolans, oribatid mites, and predatory mites. Although stochastic processes were important, deterministic processes, such as host selection, also contributed to the assembly of unique microbiota in each taxon of soil fauna. Microbial biodiversity, unique microbial taxa, and microbial dark matter (defined as unidentified microbial taxa) all increased with trophic levels within the soil food web. CONCLUSIONS Our findings demonstrate that soil animals are important as repositories of microbial biodiversity, and those at the top of the food web harbor more diverse and unique microbiomes. This hidden source of biodiversity is rarely considered in biodiversity and conservation debates and stresses the importance of preserving key soil invertebrates. Video abstract.
Collapse
Affiliation(s)
- Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Michael R Gillings
- Department of Biological Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
7
|
Frenemies: Interactions between Rhizospheric Bacteria and Fungi from Metalliferous Soils. Life (Basel) 2021; 11:life11040273. [PMID: 33806067 PMCID: PMC8064463 DOI: 10.3390/life11040273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Is it possible to improve the efficiency of bioremediation technologies? The use of mixed cultures of bacteria and fungi inoculated at the rhizosphere level could promote the growth of the associated hyperaccumulating plant species and increase the absorption of metals in polluted soils, broadening new horizons on bioremediation purposes. This work investigates interactions between Ni-tolerant plant growth-promoting bacteria and fungi (BF) isolated from the rhizosphere of a hyperaccumulating plant. The aim is to select microbial consortia with synergistic activity to be used in integrated bioremediation protocols. Pseudomonas fluorescens (Pf), Streptomyces vinaceus (Sv) Penicillium ochrochloron (Po), and Trichoderma harzianum group (Th) were tested in mixes (Po-Sv, Po-Pf, Th-Pf, and Th-Sv). These strains were submitted to tests (agar overlay, agar plug, and distance growth co-growth tests), tailored for this aim, on Czapek yeast agar (CYA) and tryptic soy agar (TSA) media and incubated at 26 ± 1 °C for 10 days. BF growth, shape of colonies, area covered on plate, and inhibition capacity were evaluated. Most BF strains still exhibit their typical characters and the colonies separately persisted without inhibition (as Po-Sv) or with reciprocal confinement (as Th-Sv and Th-Pf). Even if apparently inhibited, the Po-Pf mix really merged, thus obtaining morphological traits representing a synergic co-growth, where both strains reached together the maturation phase and developed a sort of mixed biofilm. Indeed, bacterial colonies surround the mature fungal structures adhering to them without any growth inhibition. First data from in vivo experimentation with Po and Pf inocula in pot with metalliferous soils and hyperaccumulator plants showed their beneficial effect on plant growth. However, there is a lack of information regarding the effective co-growth between bacteria and fungi. Indeed, several studies, which directly apply the co-inoculum, do not consider suitable microorganisms consortia. Synergic rhizosphere BFs open new scenarios for plant growth promotion and soil bioremediation.
Collapse
|
8
|
Occurrence of endophytic bacteria in Vietnamese Robusta coffee roots and their effects on plant parasitic nematodes. Symbiosis 2019. [DOI: 10.1007/s13199-019-00649-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Zhu YG, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, Capon A, Banwart S. Soil biota, antimicrobial resistance and planetary health. ENVIRONMENT INTERNATIONAL 2019; 131:105059. [PMID: 31374443 DOI: 10.1016/j.envint.2019.105059] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
The concept of planetary health acknowledges the links between ecosystems, biodiversity and human health and well-being. Soil, the critical component of the interconnected ecosystem, is the most biodiverse habitat on Earth, and soil microbiomes play a major role in human health and well-being through ecosystem services such as nutrient cycling, pollutant remediation and synthesis of bioactive compounds such as antimicrobials. Soil is also a natural source of antimicrobial resistance, which is often termed intrinsic resistance. However, increasing use and misuse of antimicrobials in humans and animals in recent decades has increased both the diversity and prevalence of antimicrobial resistance in soils, particularly in areas affected by human and animal wastes, such as organic manures and reclaimed wastewater, and also by air transmission. Antimicrobials and antimicrobial resistance are two sides of the sword, while antimicrobials are essential in health care; globally, antimicrobial resistance is jeopardizing the effectiveness of antimicrobial drugs, thus threatening human health. Soil is a crucial pathway through which humans are exposed to antimicrobial resistance determinants, including those harbored by human pathogens. In this review, we use the nexus of antimicrobials and antimicrobial resistance as a focus to discuss the role of soil in planetary health and illustrate the impacts of soil microbiomes on human health and well-being. This review examines the sources and dynamics of antimicrobial resistance in soils and uses the perspective of planetary health to track the movement of antimicrobial-resistance genes between environmental compartments, including soil, water, food and air.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi Zhao
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, DK-1871 Frederiksberg C, Denmark
| | - Dong Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Michael Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josep Penuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Yong Sik Ok
- Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Anthony Capon
- Planetary Health Platform, University of Sydney, Sydney, NSW, Australia
| | - Steve Banwart
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
10
|
Zhu D, Xiang Q, Yang XR, Ke X, O'Connor P, Zhu YG. Trophic Transfer of Antibiotic Resistance Genes in a Soil Detritus Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7770-7781. [PMID: 31244079 DOI: 10.1021/acs.est.9b00214] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The presence and spread of antibiotic resistance genes (ARGs) are causing substantial global public concern; however, the dispersal of ARGs in the food chain is poorly understood. Here, we experimented with a soil collembolan ( Folsomia candida)-predatory mite ( Hypoaspis aculeifer) model food chain to study trophic transfer of ARGs in a manure-contaminated soil ecosystem. Our results showed that manure amendment of soil could significantly increase ARGs in the soil collembolan microbiome. With the ARGs in the prey collembolan microbiome increasing, an increase in ARGs in the predatory mite microbiome was also observed, especially for three high abundant ARGs ( blaSHV, fosX and aph6ia). Three unique ARGs were transferred into the microbiome of the predatory mite from manure amended soil via the prey collembolan ( aac(6' )-lb(akaaacA4), yidY_mdtL and tolC). Manure amendment altered the composition and structure and reduced the diversity of the microbiomes of the prey collembolan and the predatory mite. We further reveal that bacterial communities and mobile genetic elements were two important drivers for the trophic transfer of ARGs, not just for ARGs distribution in the samples. These findings suggest that the importance of food chain transmission of ARGs for the dispersal of resistance genes in soil ecosystems may be underestimated.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Qian Xiang
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Patrick O'Connor
- Centre for Global Food and Resources, University of Adelaide , Adelaide 5005 , Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
11
|
Agamennone V, Le NG, van Straalen NM, Brouwer A, Roelofs D. Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida. Sci Rep 2019; 9:7308. [PMID: 31086216 PMCID: PMC6513849 DOI: 10.1038/s41598-019-43828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
The microbiome associated with an animal's gut and other organs is considered an integral part of its ecological functions and adaptive capacity. To better understand how microbial communities influence activities and capacities of the host, we need more information on the functions that are encoded in a microbiome. Until now, the information about soil invertebrate microbiomes is mostly based on taxonomic characterization, achieved through culturing and amplicon sequencing. Using shotgun sequencing and various bioinformatics approaches we explored functions in the bacterial metagenome associated with the soil invertebrate Folsomia candida, an established model organism in soil ecology with a fully sequenced, high-quality genome assembly. Our metagenome analysis revealed a remarkable diversity of genes associated with antimicrobial activity and carbohydrate metabolism. The microbiome also contains several homologs to F. candida genes that were previously identified as candidates for horizontal gene transfer (HGT). We suggest that the carbohydrate- and antimicrobial-related functions encoded by Folsomia's metagenome play a role in the digestion of recalcitrant soil-born polysaccharides and the defense against pathogens, thereby significantly contributing to the adaptation of these animals to life in the soil. Furthermore, the transfer of genes from the microbiome may constitute an important source of new functions for the springtail.
Collapse
Affiliation(s)
- Valeria Agamennone
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Microbiology and Systems Biology, TNO, Zeist, The Netherlands.
| | - Ngoc Giang Le
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nico M van Straalen
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Dick Roelofs
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|