1
|
Wang S, Liu J, Liu Y, Tian C. Application of rhizobium inoculation in regulating heavy metals in legumes: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173923. [PMID: 38880144 DOI: 10.1016/j.scitotenv.2024.173923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.
Collapse
Affiliation(s)
- Shiqi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbiao Liu
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163317, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China.
| |
Collapse
|
2
|
Yao X, Ren J, Fang L, Sun K, He W. The role and mechanism of Bacillus megaterium strain A14 in inhibiting the cadmium uptake by peanut plants in acidic red soil. J Appl Microbiol 2024; 135:lxae120. [PMID: 38794879 DOI: 10.1093/jambio/lxae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
AIMS This study explores the potential of cadmium (Cd)-resistant bacteria, specifically Bacillus megaterium A14, to decrease Cd accumulation in peanuts, a crop susceptible to metal uptake from contaminated soils, by understanding the bacterium's impact on plant Cd absorption mechanisms. METHODS AND RESULTS Through pot experiments, we observed that A14 inoculation significantly increased peanut biomass under Cd stress conditions, primarily by immobilizing the metal and reducing its bioavailability. The bacterium effectively changed the distribution of Cd, with a notable 46.53% reduction in the exchangeable fraction, which in turn limited the expression of genes related to Cd transport in peanuts. Additionally, A14 enhanced the plant's antioxidant response, improving its tolerance to stress. Microbial analysis through 16S sequencing demonstrated that A14 inoculation altered the peanut rhizosphere, particularly by increasing populations of Firmicutes and Proteobacteria, which play crucial roles in soil remediation from heavy metals. CONCLUSION The A14 strain effectively counters Cd toxicity in peanuts, promoting growth through soil Cd sequestration, root barrier biofilm formation, antioxidant system enhancement, suppression of Cd transport genes, and facilitation of Cd-remediating microorganisms.
Collapse
Affiliation(s)
- Xiangzhi Yao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingyu Ren
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lirong Fang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Kai Sun
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei He
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Gao L, Wang S, Zou D, Fan X, Guo P, Du H, Zhao W, Mao Q, Li H, Ma M, Rennenberg H. Physiological responses of low- and high-cadmium accumulating Robinia pseudoacacia-rhizobium symbioses to cadmium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123456. [PMID: 38307241 DOI: 10.1016/j.envpol.2024.123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.
Collapse
Affiliation(s)
- Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Dongchen Zou
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Xu Fan
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Wancang Zhao
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Qiaozhi Mao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hong Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
4
|
Chen Y, Li S, Chen X, Li Y, Yan C, Wang C, Wang Y, Xu H. Enhanced Cd activation by Coprinus comatus endophyte Bacillus thuringiensis and the molecular mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123052. [PMID: 38040187 DOI: 10.1016/j.envpol.2023.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Fungal endophytes not only tolerate and activate Cd in soil but also promote host growth, yet its Cd activation capacity and mechanism remain unrevealed. Our previous study isolated a robust endophyte Bacillus thuringiensis L1 from Coprinus comatus fruiting body with splendid Cd resistance and activation abilities under laboratory conditions. In this study, those peculiarities were investigated in the actual soil environment. L1 could significantly increase the soil bioavailable Cd content and effectively compensate for alkali-hydro nitrogen losses and microbial inhibition caused by Cd. Furthermore, L1 inoculation improved the soil's bacterial community structure and increased the relative abundance of Cd-resistant bacteria, such as Actinobacteria, Chloroflexi, Acidobacter, and Firmicutes, closely associated with the soil enzyme activity shift. The genome sequencing analysis revealed the presence of genes related to growth promotion, resistance to Cd stress, and Cd activation, which were significantly up-regulated under Cd stress. Notably, L1 mainly activates Cd in soil by secreting citric acid, succinic acid, siderophore, and soluble phosphorus substances to chelate with Cd or dissolve bounded Cd. Meanwhile, the metal-responsive transcription repressor (CadC) and the Cd-translocating protein P-type ATPase (CadA) can help the L1 to suppress the toxicity of Cd. Those results help to unveil the possible mechanism of L1 in Cd-contaminated soil remediation, providing a clear strategy for Cd bio-extraction from soil.
Collapse
Affiliation(s)
- Yahui Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| | - Shiyao Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yongyun Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Can Wang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Ying Wang
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
5
|
Li A, Li A, Luo C, Liu B. Assessing heavy metal contamination in Amomum villosum Lour. fruits from plantations in Southern China: Soil-fungi-plant interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115789. [PMID: 38091669 DOI: 10.1016/j.ecoenv.2023.115789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024]
Abstract
Amomum villosum Lour. fruit is a common healthy food widely cultivated in southern China. Heavy metal contamination of farmland soils has becomes a serious environmental concern in China. Heavy metals in soil can be introduced into the food chain and pose health risks to humans. However, microbial communities may play beneficial roles in plants grown in metal-polluted soils. This study aimed to assess the potential health risks of heavy metals in soils and A. villosum fruits from different production areas and to explore the soil-microbe-plant regulation pattern for heavy metals in A. villosum fruits. Soil and A. villosum fruit samples were collected from nine planting fields in four provinces of southern China. The results showed that soils from seven areas were polluted with heavy metals to different degrees. Cr and Mn were the most serious contaminating elements. However, the accumulation of heavy metals in A. villosum fruit was negligible with no expected human health risks. Partial least squares path analysis of structural equation modeling showed that the accumulation of heavy metals in A. villosum fruits was influenced by multiple factors. More importantly, the PLS-SEM revealed that the heavy metal content in A. villosum fruits was indirectly affected by soil heavy metals through the regulation of the microbial community. Furthermore, some fungal phyla (e.g., Ascomycota and Chytridiomycota) and genera (e.g., Mucor) were related to the heavy metal content in the soil and in A. villosum fruits. The results of this study verified that soil fungal community play an important role in the accumulation of heavy metals in A. villosum fruits. Using fungi provides a potential biological strategy for reducing the health risk posed by heavy metals in food.
Collapse
Affiliation(s)
- Arong Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Aqian Li
- School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bo Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China; Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
6
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
7
|
Goyal RK, Habtewold JZ. Evaluation of Legume-Rhizobial Symbiotic Interactions Beyond Nitrogen Fixation That Help the Host Survival and Diversification in Hostile Environments. Microorganisms 2023; 11:1454. [PMID: 37374957 PMCID: PMC10302611 DOI: 10.3390/microorganisms11061454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Plants often experience unfavorable conditions during their life cycle that impact their growth and sometimes their survival. A temporary phase of such stress, which can result from heavy metals, drought, salinity, or extremes of temperature or pH, can cause mild to enormous damage to the plant depending on its duration and intensity. Besides environmental stress, plants are the target of many microbial pathogens, causing diseases of varying severity. In plants that harbor mutualistic bacteria, stress can affect the symbiotic interaction and its outcome. To achieve the full potential of a symbiotic relationship between the host and rhizobia, it is important that the host plant maintains good growth characteristics and stay healthy under challenging environmental conditions. The host plant cannot provide good accommodation for the symbiont if it is infested with diseases and prone to other predators. Because the bacterium relies on metabolites for survival and multiplication, it is in its best interests to keep the host plant as stress-free as possible and to keep the supply stable. Although plants have developed many mitigation strategies to cope with stress, the symbiotic bacterium has developed the capability to augment the plant's defense mechanisms against environmental stress. They also provide the host with protection against certain diseases. The protective features of rhizobial-host interaction along with nitrogen fixation appear to have played a significant role in legume diversification. When considering a legume-rhizobial symbiosis, extra benefits to the host are sometimes overlooked in favor of the symbionts' nitrogen fixation efficiency. This review examines all of those additional considerations of a symbiotic interaction that enable the host to withstand a wide range of stresses, enabling plant survival under hostile regimes. In addition, the review focuses on the rhizosphere microbiome, which has emerged as a strong pillar of evolutionary reserve to equip the symbiotic interaction in the interests of both the rhizobia and host. The evaluation would draw the researchers' attention to the symbiotic relationship as being advantageous to the host plant as a whole and the role it plays in the plant's adaptation to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Agriculture and Agri-Food Canada, Lacombe Research and Development Center, Lacombe, AB T4L 1W1, Canada
| | | |
Collapse
|
8
|
Wang Z, Teng Y, Wang X, Xu Y, Li R, Hu W, Li X, Zhao L, Luo Y. Removal of cadmium and polychlorinated biphenyls by clover and the associated microbial community in a long-term co-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161983. [PMID: 36740062 DOI: 10.1016/j.scitotenv.2023.161983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Legumes such as clover are cost-effective and environmentally friendly components of strategies for remediating soils contaminated with heavy metals or organic pollutants. However, the mechanisms by which clover remediates co-contaminated soils are unclear. The present study explored the effects of phytoremediation by clover on pollutant removal and the microbial community in soil co-contaminated with cadmium (Cd) and polychlorinated biphenyls (PCBs). After 18 months of phytoremediation, Cd removal increased from 20.25 % in the control to 40.65 % in soil planted with clover, while PCB removal increased from 29.81 % to 60.02 %. High-throughput sequencing analysis showed that the relative abundances of the bacterial phylum Proteobacteria and the diazotrophic genus Rhizobium increased significantly after phytoremediation. Random forest analysis showed that bacterial and diazotrophic diversity significantly influenced Cd and PCB removal. Furthermore, co-occurrence network and correlation analyses revealed that Rhizobiales and Micromonosporales were the main bacteria associated with Cd removal, while Rhizobiales, Burkholderiales, and Xanthomonadales were identified as the main degraders of PCBs. PICRUSt functional prediction demonstrated that the gene bphC, which is related to PCB degradation, was significantly increased in the rhizosphere soil in the presence of clover. These results provide a better understanding for further studies of remediation efficiency by clover, rhizosphere microbial response and remediation mechanisms of co-contaminated soils under in situ conditions in the field.
Collapse
Affiliation(s)
- Zuopeng Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhua Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
9
|
Atuchin VV, Asyakina LK, Serazetdinova YR, Frolova AS, Velichkovich NS, Prosekov AY. Microorganisms for Bioremediation of Soils Contaminated with Heavy Metals. Microorganisms 2023; 11:microorganisms11040864. [PMID: 37110287 PMCID: PMC10145494 DOI: 10.3390/microorganisms11040864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Heavy-metal contaminants are one of the most relevant problems of contemporary agriculture. High toxicity and the ability to accumulate in soils and crops pose a serious threat to food security. To solve this problem, it is necessary to accelerate the pace of restoration of disturbed agricultural lands. Bioremediation is an effective treatment for agricultural soil pollution. It relies on the ability of microorganisms to remove pollutants. The purpose of this study is to create a consortium based on microorganisms isolated from technogenic sites for further development in the field of soil restoration in agriculture. In the study, promising strains that can remove heavy metals from experimental media were selected: Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Pseudomonas fluorescens. On their basis, consortiums were compiled, which were investigated for the ability to remove heavy metals from nutrient media, as well as to produce phytohormones. The most effective was Consortium D, which included Achromobacter denitrificans, Klebsiella oxytoca, and Rhizobium radiobacter in a ratio of 1:1:2, respectively. The ability of this consortium to produce indole-3-acetic acid and indole-3-butyric acid was 18.03 μg/L and 2.02 μg/L, respectively; the absorption capacity for heavy metals from the experimental media was Cd (56.39 mg/L), Hg (58.03 mg/L), As (61.17 mg/L), Pb (91.13 mg/L), and Ni (98.22 mg/L). Consortium D has also been found to be effective in conditions of mixed heavy-metal contamination. Due to the fact that the further use of the consortium will be focused on the soil of agricultural land cleanup, its ability to intensify the process of phytoremediation has been studied. The combined use of Trifolium pratense L. and the developed consortium ensured the removal of about 32% Pb, 15% As, 13% Hg, 31% Ni, and 25% Cd from the soil. Further research will be aimed at developing a biological product to improve the efficiency of remediation of lands withdrawn from agricultural use.
Collapse
Affiliation(s)
- Victor V. Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Research and Development Department, Kemerovo State University, Kemerovo 650000, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk 630073, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, Tomsk 634034, Russia
- Correspondence:
| | - Lyudmila K. Asyakina
- Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Kemerovo 650056, Russia
| | - Yulia R. Serazetdinova
- Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Kemerovo 650056, Russia
| | - Anna S. Frolova
- Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Kemerovo 650056, Russia
| | | | | |
Collapse
|
10
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2022; 12:809834. [PMID: 35601203 PMCID: PMC9122265 DOI: 10.3389/fmicb.2021.809834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Supel P, Śliwa-Cebula M, Miszalski Z, Kaszycki P. Cadmium-Tolerant Rhizospheric Bacteria of the C 3/CAM Intermediate Semi-Halophytic Common Ice Plant ( Mesembryanthemum crystallinum L.) Grown in Contaminated Soils. FRONTIERS IN PLANT SCIENCE 2022; 13:820097. [PMID: 35350303 PMCID: PMC8957870 DOI: 10.3389/fpls.2022.820097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
The common ice plant, Mesembryanthemum crystallinum L., has recently been found as a good candidate for phytoremediation of heavy-metal polluted soils. This semi-halophyte is a C3/CAM (Crassulacean acid metabolism) intermediate plant capable of tolerating extreme levels of cadmium in the soil. The aim of the work was to obtain and characterize novel, Cd-tolerant microbial strains that populate the root zone of M. crystallinum performing different types of photosynthetic metabolism and growing in Cd-contaminated substrates. The plants exhibiting either C3 or CAM photosynthesis were treated for 8 days with different CdCl2 doses to obtain final Cd concentrations ranging from 0.82 to 818 mg⋅kg-1 of soil d.w. The CAM phase was induced by highly saline conditions. After treatment, eighteen bacterial and three yeast strains were isolated from the rhizosphere and, after preliminary Cd-resistance in vitro test, five bacterial strains were selected and identified with a molecular proteomics technique. Two strains of the species Providencia rettgeri (W6 and W7) were obtained from the C3 phase and three (one Paenibacillus glucanolyticus S7 and two Rhodococcus erythropolis strains: S4 and S10) from the CAM performing plants. The isolates were further tested for Cd-resistance (treatment with either 1 mM or 10 mM CdCl2) and salinity tolerance (0.5 M NaCl) in model liquid cultures (incubation for 14 days). Providencia rettgeri W7 culture remained fully viable at 1 mM Cd, whereas Rh. erythropolis S4 and S10 together with P. glucanolyticus S7 were found to be resistant to 10 mM Cd in the presence of 0.5 M NaCl. It is suggested that the high tolerance of the common ice plant toward cadmium may result from the synergic action of the plant together with the Cd/salt-resistant strains occurring within rhizospheral microbiota. Moreover, the isolated bacteria appear as promising robust microorganisms for biotechnological applications in bio- and phytoremediation projects.
Collapse
Affiliation(s)
- Paulina Supel
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
| | - Marta Śliwa-Cebula
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
| | - Zbigniew Miszalski
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Kraków, Poland
- *Correspondence: Paweł Kaszycki,
| |
Collapse
|
12
|
Finger-Teixeira A, Ishii-Iwamoto EL, Marchiosi R, Coelho ÉMP, Constantin RP, Dos Santos WD, Soares AR, Ferrarese-Filho O. Cadmium uncouples mitochondrial oxidative phosphorylation and induces oxidative cellular stress in soybean roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67711-67723. [PMID: 34263402 DOI: 10.1007/s11356-021-15368-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) inhibits soybean root growth, but its exact mode of action is still not completely understood. We evaluated the effects of Cd on growth, mitochondrial respiration, lipid peroxidation, total phenols, glutathione, and activities of lipoxygenase (LOX), superoxide dismutase (SOD), and catalase (CAT) in soybean roots. In primary roots, Cd stimulated KCN-insensitive respiration and KCN-SHAM-insensitive respiration, indicating the involvement of the alternative oxidase (AOX) pathway, while it decreased KCN-sensitive respiration, suggesting an inhibition of the cytochrome oxidase pathway (COX). In isolated mitochondria, Cd uncoupled the oxidative phosphorylation since it decreased state III respiration (coupled respiration) and ADP/O and respiratory control ratios, while it increased state IV respiration (depletion of exogenously added ADP). The uncoupling effect increased extramitochondrial LOX activity, lipid peroxidation, and oxidized and reduced glutathione, which induced an antioxidant response with enhanced SOD and CAT activities. In brief, our findings reveal that Cd acts as an uncoupler of the mitochondrial oxidative phosphorylation in soybean roots, disturbing cellular respiration and inducing oxidative cellular stress.
Collapse
Affiliation(s)
- Aline Finger-Teixeira
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Emy Luiza Ishii-Iwamoto
- Laboratory of Biological Oxidations, Department of Biochemistry, University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Rogério Marchiosi
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Érica Marusa Pergo Coelho
- Laboratory of Biochemistry, Department of Agronomic Sciences, University of Maringá, Umuarama, PR, 87500-000, Brazil
| | - Rodrigo Polimeni Constantin
- Laboratory of Biological Oxidations, Department of Biochemistry, University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Wanderley Dantas Dos Santos
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Anderson Ricardo Soares
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
13
|
Xie Y, Bu H, Feng Q, Wassie M, Amee M, Jiang Y, Bi Y, Hu L, Chen L. Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. ENVIRONMENTAL RESEARCH 2021; 200:111730. [PMID: 34293315 DOI: 10.1016/j.envres.2021.111730] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.
Collapse
Affiliation(s)
- Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Heshen Bu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qijia Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jiang
- Public Laboratory Platform, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yufang Bi
- China National Bamboo Research Center, Hangzhou, 310058, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
14
|
Yu X, Zhao J, Liu X, Sun L, Tian J, Wu N. Cadmium Pollution Impact on the Bacterial Community Structure of Arable Soil and the Isolation of the Cadmium Resistant Bacteria. Front Microbiol 2021; 12:698834. [PMID: 34367100 PMCID: PMC8339475 DOI: 10.3389/fmicb.2021.698834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms play an important role in the remediation of cadmium pollution in the soil and their diversity can be affected by cadmium. In this study, the bacterial community in arable soil samples collected from two near geographical sites, with different degrees of cadmium pollution at three different seasons, were characterized using Illumina MiSeq sequencing. The result showed that cadmium is an important factor to affect the bacterial diversity and the microbial communities in the high cadmium polluted area (the site H) had significant differences compared with low cadmium polluted area (the site L). Especially, higher concentrations of Cd significantly increased the abundance of Proteobacteria and Gemmatimonas whereas decreased the abundance of Nitrospirae. Moreover, 42 Cd-resistant bacteria were isolated from six soil samples and evaluated for potential application in Cd bioremediation. Based on their Cd-MIC [minimum inhibitory concentration (MIC) of Cd2+], Cd2+ removal rate and 16S rDNA gene sequence analyses, three Burkholderia sp. strains (ha-1, hj-2, and ho-3) showed very high tolerance to Cd (5, 5, and 6 mM) and exhibited high Cd2+ removal rate (81.78, 79.37, and 63.05%), six Bacillus sp. strains (151-5,151-6,151-13, 151-20, and 151-21) showed moderate tolerance to Cd (0.8, 0.4, 0.8, 0.4, 0.6, and 0.4 mM) but high Cd2+ removal rate (84.78, 90.14, 82.82, 82.39, 81.79, and 84.17%). Those results indicated that Burkholderia sp. belonging to the phylum Proteobacteria and Bacillus sp. belonging to the phylum Firmicutes have developed a resistance for cadmium and may play an important role in Cd-contaminated soils. Our study provided baseline data for bacterial communities in cadmium polluted soils and concluded that Cd-resistant bacteria have potential for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Xiaoxia Yu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
| | - JinTong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LiXin Sun
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Mechanism and application of Sesbania root-nodulating bacteria: an alternative for chemical fertilizers and sustainable development. Arch Microbiol 2021; 203:1259-1270. [PMID: 33388789 DOI: 10.1007/s00203-020-02137-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Chemical fertilizers are used in large-scale throughout the globe to satisfy the food and feed requirement of the world. Demanding cropping with the enhanced application of chemical fertilizers, linked with a decline in the recycling of natural or other waste materials, has led to a decrease in the organic carbon levels in soils, impaired soil physical properties and shrinking soil microbial biodiversity. Sustenance and improvement of soil fertility are fundamental for comprehensive food security and ecological sustainability. To feed the large-scale growing population, the role of biofertilizers and their study tends to be an essential aspect globally. In this review, we have emphasized the nitrogen-fixing plants of Sesbania species. It is a plant that is able to accumulate nitrogen-rich biomass and used as a green manure, which help in soil amelioration. Problems of soil infertility due to salinity, alkalinity and waterlogging could be alleviated through the use of biologically fixed nitrogen by Sesbania plants leading to the conversion of futile land into a fertile one. A group of plant growth-promoting rhizobacteria termed as "rhizobia" are able to nodulate a variety of legumes including Sesbania. The host-specific rhizobial strains can be used as potential alternative for nitrogenous fertilizers as they help the host plant in growth and development and enhance their endurance under stressed conditions. The review gives the depth understanding of how the agriculturally important microorganisms can be used for the reduction of broad-scale application of chemical fertilizers with special attention to Sesbania-nodulating rhizobia.
Collapse
|
16
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2021. [PMID: 35601203 DOI: 10.3389/fmicb.2021.687888/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Lead and cadmium-resistant bacterial species isolated from heavy metal-contaminated soils show plant growth-promoting traits. Int Microbiol 2020; 23:625-640. [DOI: 10.1007/s10123-020-00133-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023]
|
18
|
The Immobilization of Soil Cadmium by the Combined Amendment of Bacteria and Hydroxyapatite. Sci Rep 2020; 10:2189. [PMID: 32041971 PMCID: PMC7010816 DOI: 10.1038/s41598-020-58259-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
The remediation of heavy metal-contaminated soils has attracted increased attention worldwide. The immobilization of metals to prevent their uptake by plants is an efficient way to remediate contaminated soils. This work aimed to seek the immobilization of cadmium in contaminated soils via a combination method. Flask experiments were performed to investigate the effects of hydroxyapatite (HAP) and the Cupriavidus sp. strain ZSK on soil pH and DTPA-extractable cadmium. Pot experiments were carried out to study the effects of the combined amendment on three plant species. The results showed that HAP has no obvious influence on the growth of the strain. With increasing concentrations of HAP, the soil pH increased, and the DTPA-extractable Cd decreased. Via the combined amendment of the strain and HAP (SH), the DTPA-extractable Cd in the soil decreased by 58.2%. With the combined amendment of the SH, the cadmium accumulation in ramie, dandelion, and daisy decreased by 44.9%, 51.0%, and 38.7%, respectively. Moreover, the combined amendment somewhat benefitted the growth of the three plant species and significantly decreased the biosorption of cadmium. These results suggest that the immobilization by the SH combination is a potential method to decrease the available cadmium in the soil and the cadmium accumulation in plants.
Collapse
|
19
|
Yu X, Kang X, Li Y, Cui Y, Tu W, Shen T, Yan M, Gu Y, Zou L, Ma M, Xiang Q, Zhao K, Liang Y, Zhang X, Chen Q. Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113167. [PMID: 31522008 DOI: 10.1016/j.envpol.2019.113167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 05/28/2023]
Abstract
Mine tailings contain toxic metals and can lead to serious pollution of soil environment. Phytoremediation using legumes has been regarded as an eco-friendly way for the rehabilitation of tailings-laden lands but little is known about the changes of microbial structure during the process. In the present study, we monitored the dynamic change of microbiota in the rhizosphere of Pongamia pinnata during a 2-year on-site remediation of vanadium-titanium magnetite tailings. After remediation, overall soil health conditions were significantly improved as increased available N and P contents and enzyme activities were discovered. There was also an increase of microbial carbon and nitrogen contents. The Illumina sequencing technique revealed that the abundance of taxa under Proteobacteria was increased and rhizobia-related OTUs were preferentially enriched. A significant difference was discovered for sample groups before and after remediation. Rhizobium and Nordella were identified as the keystone taxa at genus rank. The functional prediction indicated that nitrogen fixation was enhanced, corresponding well with qPCR results which showed a significant increase of nifH gene copy numbers by the 2nd year. Our findings for the first time elucidated that legume phytoremediation can effectively cause microbial communities to shift in favour of rhizobia in heavy metal contaminated soil.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xia Kang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Yanmei Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu 610015, China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu 610015, China
| | - Tian Shen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yueyang Liang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|