1
|
Lu A, Li S. Polysaccharides as a Hydrophilic Building Block of Amphiphilic Block Copolymers for the Conception of Nanocarriers. Pharmaceutics 2024; 16:467. [PMID: 38675130 PMCID: PMC11054713 DOI: 10.3390/pharmaceutics16040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Polysaccharides are gaining increasing attention for their relevance in the production of sustainable materials. In the domain of biomaterials, polysaccharides play an important role as hydrophilic components in the design of amphiphilic block copolymers for the development of drug delivery systems, in particular nanocarriers due to their outstanding biocompatibility, biodegradability, and structural versatility. The presence of a reducing end in polysaccharide chains allows for the synthesis of polysaccharide-based block copolymers. Compared with polysaccharide-based graft copolymers, the structure of block copolymers can be more precisely controlled. In this review, the synthesis methods of polysaccharide-based amphiphilic block copolymers are discussed in detail, taking into consideration the structural characteristics of polysaccharides. Various synthetic approaches, including reductive amination, oxime ligation, and other chain-end modification reactions, are explored. This review also focuses on the advantages of polysaccharides as hydrophilic blocks in polymeric nanocarriers. The structure and unique properties of different polysaccharides such as cellulose, hyaluronic acid, chitosan, alginate, and dextran are described along with examples of their applications as hydrophilic segments in the synthesis of amphiphilic copolymers to construct nanocarriers for sustained drug delivery.
Collapse
Affiliation(s)
- Aijing Lu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China;
| | - Suming Li
- Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
2
|
Chen H, Hao D, Chen C, Sun Y, Yu X. Effects of midgut bacteria in Hyphantria cunea (Lepidoptera: Erebidae) on nuclear polyhedrosis virus and Bacillus thuringiensis (Bacillales: Bacillaceae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:1. [PMID: 36916277 PMCID: PMC10011879 DOI: 10.1093/jisesa/iead009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Hyphantria cunea Drury (Lepidoptera: Erebidae) is a quarantine pest in China that can cause damage to hundreds of plants. As biological control agents, Nuclear Polyhedrosis Virus (NPV) and Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt) are commonly used to inhibit the prevalence of H. cunea. To investigate the role of midgut bacteria in the infection of NPV and Bt in H. cunea, we performed a series of tests, including isolating the dominant culturable bacteria in the midgut, eliminating intestinal bacteria, and respectively inoculating the dominant strains with NPV and Bt for bioassay. Two dominant bacteria, Klebsiella oxytoca Lautrop (Enterobacterales: Enterobacteriaceae) and Enterococcus mundtii Collins (Lactobacillales: Enterococcaceae), in the midgut of H. cunea were identified, and a strain of H. cunea larvae without intestinal bacteria was successfully established. In the bioassays of entomopathogen infection, K. oxytoca showed significant synergistic effects with both NPV and Bt on the death of H. cunea. In contrast, E. mundtii played antagonistic effects. This phenomenon may be attributed to the differences in the physico-chemical properties of the two gut bacteria and the alkaline environment required for NPV and Bt to infect the host. It is worth noting that the enhanced insecticidal activity of K. oxytoca on NPV and Bt provides a reference for future biological control of H. cunea by intestinal bacteria.
Collapse
Affiliation(s)
- Hongjian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | | | - Changyu Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhang Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohang Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Wunderlich G, Bull M, Ross T, Rose M, Chapman B. Understanding the microbial fibre degrading communities & processes in the equine gut. Anim Microbiome 2023; 5:3. [PMID: 36635784 PMCID: PMC9837927 DOI: 10.1186/s42523-022-00224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
The equine gastrointestinal tract is a self-sufficient fermentation system, housing a complex microbial consortium that acts synergistically and independently to break down complex lignocellulolytic material that enters the equine gut. Despite being strict herbivores, equids such as horses and zebras lack the diversity of enzymes needed to completely break down plant tissue, instead relying on their resident microbes to carry out fibrolysis to yield vital energy sources such as short chain fatty acids. The bulk of equine digestion occurs in the large intestine, where digesta is fermented for 36-48 h through the synergistic activities of bacteria, fungi, and methanogenic archaea. Anaerobic gut dwelling bacteria and fungi break down complex plant polysaccharides through combined mechanical and enzymatic strategies, and notably possess some of the greatest diversity and repertoire of carbohydrate active enzymes among characterized microbes. In addition to the production of enzymes, some equid-isolated anaerobic fungi and bacteria have been shown to possess cellulosomes, powerful multi-enzyme complexes that further enhance break down. The activities of both anaerobic fungi and bacteria are further facilitated by facultatively aerobic yeasts and methanogenic archaea, who maintain an optimal environment for fibrolytic organisms, ultimately leading to increased fibrolytic microbial counts and heightened enzymatic activity. The unique interactions within the equine gut as well as the novel species and powerful mechanisms employed by these microbes makes the equine gut a valuable ecosystem to study fibrolytic functions within complex communities. This review outlines the primary taxa involved in fibre break down within the equine gut and further illuminates the enzymatic strategies and metabolic pathways used by these microbes. We discuss current methods used in analysing fibrolytic functions in complex microbial communities and propose a shift towards the development of functional assays to deepen our understanding of this unique ecosystem.
Collapse
Affiliation(s)
- Georgia Wunderlich
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| | - Michelle Bull
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| | - Tom Ross
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Michael Rose
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Belinda Chapman
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| |
Collapse
|
4
|
Li J, Ding H, Zhao J, Wang S, Dong Z, Shao T. Characterization and identification of a novel microbial consortium M2 and its effect on fermentation quality and enzymatic hydrolysis of sterile rice straw. J Appl Microbiol 2021; 132:1687-1699. [PMID: 34662476 DOI: 10.1111/jam.15328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
AIMS To isolate and enrich lignocellulolytic microbial consortia from yak (Bos grunniens) rumen and evaluate their effects on the fermentation characteristics and enzymatic hydrolysis in rice straw silage. METHODS AND RESULTS A novel microbial consortium M2 with high CMCase and xylanase activities was enriched and observed to be prone to use natural carbon sources. Its predominant genus was Enterococcus, and most carbohydrate-active enzyme (CAZyme) genes belonged to the glycosyl hydrolases class. The consortium M2 was introduced with or without combined lactic acid bacteria (XA) to rice straw silage for 60 days. Inoculating the consortium M2 notably decreased the structural carbohydrate contents and pH of rice straw silages. Treatment that combines consortium M2 and XA resulted in the highest levels of lactic acid and lignocellulose degradation. The consortium M2 alone or combined with XA significantly (p < 0.01) increased water-soluble carbohydrates (WSCs), mono- and disaccharides contents compared with the XA silage. Combined addition obviously improved the enzymatic conversion efficiency of rice straw silage with higher glucose and xylose yields (23.39 and 12.91 w/w% DM, respectively). CONCLUSIONS Ensiling pretreatment with the microbial consortium M2 in sterile rice straw improved fermentation characteristics. The combined application of consortium M2 with XA had synergistic effects on promoting the degradation of structural carbohydrates and enzymatic hydrolysis. SIGNIFICANCE AND IMPACT OF THE STUDY Rice straw is difficult to ensile because of its low WSC and high structural carbohydrate contents. The microbial consortium M2 identified herein exhibits great potential for degrading fibrous substrates, and their combination with XA provides a faster and more effective synergistic strategy for biorefinery of lignocellulosic biomass.
Collapse
Affiliation(s)
- Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Hao Ding
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Hu L, Zhu X, Shang L, Teng Y, Li J, Li B. Inhibit the intrinsic bacteria from konjac glucomannan hydrosol for its improved viscosity stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Li J, Tang X, Zhao J, Chen S, Wang S, Shao T. Improvement of fermentation quality and cellulose convertibility of Napier grass silage by inoculation of cellulolytic bacteria from Tibetan yak (Bos grunniens). J Appl Microbiol 2020; 130:1857-1867. [PMID: 33128833 DOI: 10.1111/jam.14917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022]
Abstract
AIMS To isolate and identify cellulolytic bacteria from yak rumen and further evaluate the effects of the isolates on the silage quality, structural carbohydrates degradation and cellulose convertibility of Napier grass silage. METHODS AND RESULTS Two out of 218 strains were selected based on their most extensive transparent zone and the highest filter paper disintegration rate. The two isolates (JFL12 and JF85) could grow normally at 15-55°C, pH 3·0-7·0 and NaCl (3·0, 6·5%), and were identified as Enterococcus casseliflavus and Enterococcus faecalis by 16S rDNA sequence analysis, respectively. Napier grass was ensiled with no additive control (C), Lactobacillus plantarum (Lp), JFL12, JF85, JFL12 + Lp and JF85 + Lp for 3, 5, 7, 14, 30 and 60 days. All inoculated silages had higher lactic acid content, lower pH, ammonia nitrogen (NH3 -N) and lignocellulose contents than the control silage. Silages treated with JFL12 + Lp and JF85 + Lp had the lowest pH and NH3 -N contents, the highest lactic acid content and lignocellulose degradation among all treatments. The isolates with or without Lp significantly (P < 0·01) increased water soluble carbohydrates (WSC), glucose, fructose and sucrose contents as compared with the control silage. Silages treated with JFL12 + Lp and JF85 + Lp had higher glucose yield and cellulose convertibility than the other silages. CONCLUSIONS Therefore, the application of isolates (JFL12 and JF85) with Lp had synergistic effects on accelerating the degradation of structural carbohydrates and improving the silage quality. SIGNIFICANCE AND IMPACT OF THE STUDY Napier grass presents difficulty to ensiling due to its low WSC and high structural carbohydrates contents. The screened cellulolytic bacteria could be a candidate strain in improving fermentation quality and structural carbohydrates degradability of ensiled forages.
Collapse
Affiliation(s)
- J Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - X Tang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - J Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - S Chen
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - S Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - T Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|