1
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Proteomic analysis to unravel the biochemical mechanisms triggered by Bacillus toyonensis SFC 500-1E under chromium(VI) and phenol stress. Biometals 2023; 36:1081-1108. [PMID: 37209221 DOI: 10.1007/s10534-023-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - María D Paez
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
2
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Insights on the assembly processes and drivers of soil microbial communities in different depth layers in an abandoned polymetallic mining district. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132043. [PMID: 37453349 DOI: 10.1016/j.jhazmat.2023.132043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Soil microbes, which play crucial roles in maintaining soil functions and restoring degraded lands, are impacted by heavy metal pollution. This study investigated the vertical distribution of bacterial communities along the soil profiles across four types of areas (heavy metal pollution level: tailings heap area > phytoremediation area > natural restoration area > original forest area) in an abandoned polymetallic mining district by 16S rRNA sequencing, and aimed to disentangle the assembly mechanisms and key drivers of the vertical variation in bacterial community structure. Bacterial diversity and composition were found to vary remarkably between the depth layers in all types of areas, with heterogeneous selection dominated the vertical distribution pattern of soil bacterial communities. Pearson correlation analysis and partial Mantel test revealed that soil nutrients mainly shaped the vertical distribution of bacterial microbiota along soil profiles in the original forest and natural restoration areas. Ni, As, and bioavailable As were the key drivers regulating the vertical variation of bacterial assemblages in the phytoremediation area, whereas Pb, pH, soil organic carbon, and available nitrogen were crucial drivers in the tailings heap area. These findings reveal the predominant assembly mechanisms and drivers governing the vertical distribution of soil bacterial microbiota and indicate the efficiency of phytoremediation and ecological restoration on ameliorating edaphic micro-ecosystems in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Shiny Matilda C, Mannully ST, Rao VP, Shanthi C. Chromium binding Bacillus cereus VITSH1-a promising candidate for heavy metal clean up. Lett Appl Microbiol 2021; 72:517-525. [PMID: 33331052 DOI: 10.1111/lam.13441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Bacteria survive metal stress by several mechanisms and metal binding is one such mechanism which has been screened in the present study to investigate the survival strategies of metal resistant bacteria. The production of siderophores, a metal chelating agent, was detected by chrome azurol S agar assay. The changes in cell wall studied by analysing the peptidoglycan and teichoic acid content indicated an increase in the cell wall content. Evaluation of morphological and physiological alterations like cell size, granularity analysed by SEM and flow cytometry analysis revealed an increase in cell size and granularity respectively. The transformation of phosphates monitored by 31 P NMR analysis indicated the presence of inorganic phosphate. Based on the cell wall changes and the 31 P NMR analysis, the surface charge of the organism was studied by zeta potential which displayed a difference at pH7.
Collapse
Affiliation(s)
- C Shiny Matilda
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S T Mannully
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - V P Rao
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C Shanthi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|