1
|
Kong Y, Deering AJ, Nemali K. Minimizing Escherichia coli O157:H7 contamination in indoor farming: effects of cultivar type and ultra-violet light quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4218-4225. [PMID: 38294189 DOI: 10.1002/jsfa.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Bacterial contamination of produce is a concern in indoor farming due to close plant spacing, recycling irrigation, warm temperatures, and high relative humidity during production. Cultivars that inherently resist contamination and photo-sanitization using ultraviolet (UV) radiation during the production phase can reduce bacterial contamination. However, there is limited information to support their use in indoor farming. RESULTS Lettuce (Lactuca sativa) cultivars with varying plant architectures grown in a custom-built indoor farm exhibited differences in E. coli O157:H7 survival after inoculation. The survival of E. coli O157:H7 was lowest in the leaf cultivar (open architecture) and highest in the romaine and oakleaf cultivars (compact architecture). Of the different UV wavelengths that were tested (UV-A, UV-A + B, UV-A + C), UV A + C at an intensity of 54.5 μmol m-2 s-1 (with 3.5 μmol m-2 s-1 of UV-C), provided for 15 min every day, was found to be most efficacious in reducing the E. coli O157:H7 survival on romaine lettuce with no negative effects on plant growth and quality. CONCLUSION Contamination of E. coli O157:H7 on lettuce plants can be reduced and the food safety levels in indoor farms can be increased by selecting cultivars with an open leaf architecture coupled with photo-sanitization using low and frequent exposure to UV A + C radiation. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuyao Kong
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Amanda J Deering
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Krishna Nemali
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Detert K, Schmidt H. Sporadic Detection of Escherichia coli O104:H4 Strain C227/11Φcu in the Edible Parts of Lamb's Lettuce Cultured in Contaminated Agricultural Soil Samples. Microorganisms 2023; 11:2072. [PMID: 37630632 PMCID: PMC10457958 DOI: 10.3390/microorganisms11082072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In the current study, we demonstrate that E. coli O104:H4 strain C227/11Φcu, a derivative of the 2011 enterohemorrhagic/enteroaggregative (EHEC/EAEC) E. coli outbreak strain, migrated into the edible portion of lamb's lettuce plants upon contamination of the surrounding soil. Seeds were surface-sterilized and cultivated on Murashige-Skoog agar or in autoclaved agricultural soil. Migration into the edible portions was investigated by inoculating the agar or soil close to the plants with 108 colony-forming units (CFU). The edible parts, which did not come into contact with the contaminated medium or soil, were quantitatively analyzed for the presence of bacteria after 2, 4 and 8 weeks. Strain C227/11Φcu could colonize lamb's lettuce when contamination of medium or soil occurs. The highest recovery rate (27%) was found for lettuce cultivated in agar, and up to 1.6 × 103 CFU/g lettuce was detected. The recovery rate was lower for the soil samples (9% and 13.5%). Although the used contamination levels were high, migration of C227/11Φcu from the soil into the edible parts was demonstrated. This study further highlights the risk of crop plant contamination with pathogenic E. coli upon soil contamination.
Collapse
Affiliation(s)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany;
| |
Collapse
|
3
|
Zhao X, Sun Y, Ma Y, Xu Y, Guan H, Wang D. Research advances on the contamination of vegetables by Enterohemorrhagic Escherichia coli: pathways, processes and interaction. Crit Rev Food Sci Nutr 2022; 64:4833-4847. [PMID: 36377729 DOI: 10.1080/10408398.2022.2146045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterohemorrhagic Escherichia coli is considered one of the primary bacterial pathogens that cause foodborne diseases because it can survive in meat, vegetables and so on. Understanding of the effect of vegetable characteristics on the adhesion and proliferation process of EHEC is necessary to develop control measures. In this review, the amount and methods of adhesion, the internalization pathway and proliferation process of EHEC have been described during the vegetable contamination. Types, cultivars, tissue characteristics, leaf age, and damage degree can affect EHEC adhesion on vegetables. EHEC cells contaminate the root surface of vegetables through soil and further internalize. It can also contaminate the stem scar tissue of vegetables by rain or irrigation water and internalize the vertical axis, as well as the stomata, necrotic lesions and damaged tissues of vegetable leaves. After EHEC adhered to the vegetables, they may further proliferate and form biofilms. Leaf and fruit tissues were more sensitive to biofilm formation, and shedding rate of biofilms on epidermis tissue was faster. Insights into the mechanisms of vegetable contamination by EHEC, including the role of exopolysaccharides and proteins responsible for movement, adhesion and oxidative stress response could reveal the molecular mechanism by which EHEC contaminates vegetables.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yeting Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yujia Xu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongyang Guan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
4
|
Culliney P, Schmalenberger A. Cultivation Conditions of Spinach and Rocket Influence Epiphytic Growth of Listeria monocytogenes. Foods 2022; 11:foods11193056. [PMID: 36230132 PMCID: PMC9563967 DOI: 10.3390/foods11193056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Leafy vegetables are associated with Listeriosis outbreaks due to contamination with Listeria monocytogenes. To date, contradictory findings were reported on spinach, rocket, and kale, where some studies reported growth of L. monocytogenes, while others did not. Thus, the current study investigated the reason for conflicting findings by producing leafy vegetables, where cultivation factors were known for growth potential studies. Of all polytunnel produce, kale Nero di Toscana demonstrated the highest growth potential (2.56 log cfu g−1), followed by spinach F1 Cello (1.84 log cfu g−1), rocket Buzz (1.41 log cfu g−1), spinach F1 Trumpet (1.37 log cfu g−1), and finally rocket Esmee (1.23 log cfu g−1). Thus, plant species and variety influenced L. monocytogenes growth potentials. Moreover, significantly lower growth potentials of 0.3 log cfu g−1 were identified when rocket Buzz was cultivated in open fields (1.11 log cfu g−1) instead of a polytunnel. The opposite effect was observed for spinach F1 Trumpet, where growth potentials increased significantly by 0.84 log cfu g−1 when cultivated in open fields (2.21 log cfu g−1). Furthermore, a significant seasonality effect between batches was found (p < 0.05). This study revealed that spinach and rocket cultivation conditions are at least co-factors in the reporting of differing growth potentials of L. monocytogenes across literature and should be considered when conducting future growth potential studies.
Collapse
|
5
|
Uhlig E, Kjellström A, Oscarsson E, Nurminen N, Nabila Y, Paulsson J, Lupan T, Velpuri NSBP, Molin G, Håkansson Å. The live bacterial load and microbiota composition of prepacked "ready-to-eat" leafy greens during household conditions, with special reference to E. coli. Int J Food Microbiol 2022; 377:109786. [PMID: 35716582 DOI: 10.1016/j.ijfoodmicro.2022.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Ready-to-eat (RTE) leafy greens are popular products that unfortunately have been associated with numerous foodborne illness outbreaks. Since the influence of consumer practices is essential for their quality and safety, the objective of this study was to analyze the microbiota of RTE products throughout shelf life during simulated household conditions. Products from different companies were analyzed in terms of plate counts, and resealed and unopened packages were compared. High bacterial loads were found, up to a total plate count of 9.6 log10 CFU/g, and Enterobacteriaceae plate counts up to 6.0 CFU/g on the expiration date. The effect of consumer practice varied, thus no conclusions regarding resealed or unopened bags could be drawn. The tested products contained opportunistic pathogens, such as Enterobacter homaechei, Hafnia paralvei and Pantoea agglomerans. Amplicon sequencing revealed that the relative abundance of major taxonomic groups changed during shelf life; Pseudomonadaceae and Xanthomonadaceae decreased, while Flavobacteriaceae and Marinomonadaceae inceased. Inoculation with E. coli CCUG 29300T showed that the relative abundance of Escherichia-Shigella was lower on rocket than on other tested leafy greens. Inoculation with E. coli strain 921 indicate growth at the beginning of shelf-life time, while E. coli 731 increases at the end, seemingly able to adapt to cold storage conditions. The high levels of live microorganisms, the detection of opportunistic pathogens, and the ability of E. coli strains to grow at refrigeration temperature raise concerns and indicate that the shelf life may be shortened to achieve a safer product. Due to variations between products, further studies are needed to define how long the shelf-life of these products should be, to ensure a safe product even at the end of the shelf-life period.
Collapse
Affiliation(s)
- E Uhlig
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden.
| | - A Kjellström
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| | - E Oscarsson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| | - N Nurminen
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| | - Y Nabila
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| | - J Paulsson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| | - T Lupan
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| | - N S B P Velpuri
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| | - G Molin
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| | - Å Håkansson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
6
|
Use of bacterial strains antagonistic to Escherichia coli for biocontrol of spinach: A field trial. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Mulaosmanovic E, Windstam ST, Vågsholm I, Alsanius BW. Size Matters: Biological and Food Safety Relevance of Leaf Damage for Colonization of Escherichia coli O157:H7 gfp. Front Microbiol 2021; 11:608086. [PMID: 33584570 PMCID: PMC7873480 DOI: 10.3389/fmicb.2020.608086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
This study examined the biological and food safety relevance of leaf lesions for potential invasion of food pathogens into the plant tissue (internalization). This was done by determining the role of artificial leaf damage in terms of damaged leaf area on proliferation of E. coli O157:H7 gfp+. In a two-factorial experiment, unwashed fresh baby leaf spinach (Spinacia oleracea L.) was subjected to four damage levels (undamaged, low, moderate, high damage; factor 1) and three incubation intervals (0, 1, 2 days post-inoculation; factor 2). Individual leaves were immersed for 15 s in a suspension loaded with E. coli O157:H7 gfp+ (106 CFU × mL–1). The leaves were analyzed individually using image analysis tools to quantify leaf area and number and size of lesions, and using confocal laser scanning and scanning electron microscopy to visualize leaf lesions and presence of the introduced E. coli strain on and within the leaf tissue. Prevalence of E. coli O157:H7 gfp+ was assessed using a culture-dependent technique. The results showed that size of individual lesions and damaged leaf area affected depth of invasion into plant tissue, dispersal to adjacent areas, and number of culturable E. coli O157:H7 gfp+ directly after inoculation. Differences in numbers of the inoculant retrieved from leaf macerate evened out from 2 days post-inoculation, indicating rapid proliferation during the first day post-inoculation. Leaf weight was a crucial factor, as lighter spinach leaves (most likely younger leaves) were more prone to harbor E. coli O157:H7 gfp+, irrespective of damage level. At the high inoculum density used, the risk of consumers’ infection was almost 100%, irrespective of incubation duration or damage level. Even macroscopically intact leaves showed a high risk for infection. These results suggest that the risk to consumers is correlated with how early in the food chain the leaves are contaminated, and the degree of leaf damage. These findings should be taken into account in different steps of leafy green processing. Further attention should be paid to the fate of viable, but non-culturable, shiga-toxigenic E. coli on and in ready-to-eat leafy vegetables.
Collapse
Affiliation(s)
- Emina Mulaosmanovic
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sofia T Windstam
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ivar Vågsholm
- Bacteriology and Food Safety Unit, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Beatrix W Alsanius
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
8
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Rosberg AK, Darlison J, Mogren L, Alsanius BW. Commercial wash of leafy vegetables do not significantly decrease bacterial load but leads to shifts in bacterial species composition. Food Microbiol 2020; 94:103667. [PMID: 33279090 DOI: 10.1016/j.fm.2020.103667] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022]
Abstract
Production of leafy vegetables for the "Ready-to-eat"-market has vastly increased the last 20 years, and consumption of these minimally processed vegetables has led to outbreaks of food-borne diseases. Contamination of leafy vegetables can occur throughout the production chain, and therefore washing of the produce has become a standard in commercial processing. This study explores the bacterial communities of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia) in a commercial setting in order to identify potential contamination events, and to investigate effects on bacterial load by commercial processing. Samples were taken in field, after washing of the produce and at the end of shelf-life. This study found that the bacterial community composition and diversity changed significantly from the first harvest to the end of shelf-life, where the core microbiome from the first to the last sampling constituted <2% of all OTUs. While washing of the produce had no reducing effect on bacterial load compared to unwashed, washing led to a change in species composition. As the leaves entered the cold chain after harvest, a rise was seen in the relative abundance of spoilage bacteria. E. coli was detected after the washing indicating issues of cross-contamination in the wash water.
Collapse
Affiliation(s)
- Anna Karin Rosberg
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, P.O. Box 103, SE-230 53, Alnarp, Sweden.
| | - Julia Darlison
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, P.O. Box 103, SE-230 53, Alnarp, Sweden
| | - Lars Mogren
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, P.O. Box 103, SE-230 53, Alnarp, Sweden
| | - Beatrix Waechter Alsanius
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Laboratory, P.O. Box 103, SE-230 53, Alnarp, Sweden
| |
Collapse
|