1
|
Ndoye B, Shafiei R, Sanaei NS, Cleenwerck I, Somda MK, Dicko MH, Tounkara LS, Guiro AT, Delvigne F, Thonart P. Acetobacter senegalensis Isolated from Mango Fruits: Its Polyphasic Characterization and Adaptation to Protect against Stressors in the Industrial Production of Vinegar: A Review. J Appl Microbiol 2022; 132:4130-4149. [PMID: 35182093 DOI: 10.1111/jam.15495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
It has been more than a decade since Acetobacter senegalensis was isolated, identified, and described as a thermotolerant strain of acetic acid bacteria. It was isolated from mango fruits in Senegal and used for industrial vinegar production in developing countries, mainly in sub-Saharan Africa. The strain was tested during several spirit vinegar fermentation processes at relatively high temperatures in accordance with African acclimation. The upstream fermentation process had significant stress factors, which are highlighted in this review so that the fermentation process can be better controlled. Due to its high industrial potential, this strain was extensively investigated by diverse industrial microbiologists worldwide; they concentrated on its microbiological, physiological, and genomic features. A research group based in Belgium proposed an important project for the investigation of the whole-genome sequence of A. senegalensis. It would use a 454-pyrosequencing technique to determine and corroborate features that could give this strain significant diverse bioindustrial applications. For instance, its application in cocoa bean fermentation has made it a more suitable acetic acid bacterium for the making of chocolate than Acetobacter pasteurianus. Therefore, in this paper, we present a review that summarizes the current research on A. senegalensis at its microbial and genomic levels and also its specific bioindustrial applications, which can provide economic opportunities for African agribusiness.
Collapse
Affiliation(s)
- Bassirou Ndoye
- University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN), BP, Kaolack, Senegal.,Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| | - Rasoul Shafiei
- Department of Cell, Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Nastaran Shah Sanaei
- Department of Cell, Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Marius K Somda
- Biochemistry, Biotechnology, Food Technology and Nutrition Laboratory, University Pr Joseph Ki Zerbo, PO, Ouagadougou, Burkina Faso
| | - Mamoudou Hama Dicko
- Biochemistry, Biotechnology, Food Technology and Nutrition Laboratory, University Pr Joseph Ki Zerbo, PO, Ouagadougou, Burkina Faso
| | | | - Amadou Tidiane Guiro
- University of Sine Saloum El Hadji Ibrahima Niasse (USSEIN), BP, Kaolack, Senegal
| | - Frank Delvigne
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| | - Philippe Thonart
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Belgique
| |
Collapse
|
2
|
Xia K, Han C, Xu J, Liang X. Toxin-antitoxin HicAB regulates the formation of persister cells responsible for the acid stress resistance in Acetobacter pasteurianus. Appl Microbiol Biotechnol 2021; 105:725-739. [PMID: 33386897 DOI: 10.1007/s00253-020-11078-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
Elucidation of the acetic acid resistance (AAR) mechanisms is of great significance to the development of industrial microbial species, specifically to the acetic acid bacteria (AAB) in vinegar industry. Currently, the role of population heterogeneity in the AAR of AAB is still unclear. In this study, we investigated the persister formation in AAB and the physiological role of HicAB in Acetobacter pasteurianus Ab3. We found that AAB were able to produce a high level of persister cells (10-2 to 100 in frequency) in the exponential-phase cultures. Initial addition of acetic acid and ethanol reduced the ratio of persister cells in A. pasteurianus by promoting the intracellular ATP level. Further, we demonstrated that HicAB was an important regulator of AAR in A. pasteurianus Ab3. Strains lacking hicAB showed a decreased survival under acetic acid exposure. Deletion of hicAB significantly diminished the acetic acid production, acetification rate, and persister formation in A. pasteurianus Ab3, underscoring the correlation between hicAB, persister formation, and acid stress resistance. By transcriptomic analysis (RNA-seq), we revealed that HicAB contributed to the survival of A. pasteurianus Ab3 under high acid stress by upregulating the expression of genes involved in the acetic acid over-oxidation and transport, 2-methylcitrate cycle, and oxidative phosphorylation. Collectively, the results of this study refresh our current understanding of the AAR mechanisms in A. pasteurianus, which may facilitate the development of novel ways for improving its industrial performance and direct the scaled-up vinegar production. KEY POINTS: • AAB strains form persister cells with different frequencies. • A. pasteurianus are able to form acid-tolerant persister cells. • HicAB contributes to the AAR and persister formation in A. pasteurianus Ab3.
Collapse
Affiliation(s)
- Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chengcheng Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|