1
|
Chunyi K, Wei S, Mingken W, Chunyu X, Changxiu L. Diversity, community structure, and abundance of nirS-type denitrifying bacteria on suspended particulate matter in coastal high-altitude aquaculture pond water. Sci Rep 2024; 14:5594. [PMID: 38454013 PMCID: PMC10920899 DOI: 10.1038/s41598-024-56196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Denitrifying bacteria harboring the nitrate reductase S (nirS) gene convert active nitrogen into molecular nitrogen, and alleviate eutrophication in aquaculture water. Suspended particulate matter (SPM) is an important component of aquaculture water and a carrier for denitrification. SPM with different particle sizes were collected from a coastal high-altitude aquaculture pond in Maoming City, China. Diversity, community structure, abundance of nirS-type denitrifying bacteria on SPM and environmental influencing factors were studied using high-throughput sequencing, fluorescence quantitative PCR, and statistical analysis. Pseudomonas, Halomonas, and Wenzhouxiangella were the dominant genera of nirS-type denitrifying bacteria on SPM from the ponds. Network analysis revealed Pseudomonas and Halomonas as the key genera involved in the interaction of nirS-type denitrifying bacteria on SPM in the ponds. qPCR indicated a trend toward greater nirS gene abundance in progressively larger SPM. Dissolved oxygen, pH, temperature, and SPM particle size were the main environmental factors influencing changes in the nirS-type denitrifying bacterial community on SPM in coastal high-altitude aquaculture pond water. These findings increase our understanding of the microbiology of nitrogen cycle processes in aquaculture ecosystem, and will help optimize aquatic tailwater treatment strategies.
Collapse
Affiliation(s)
- Kuang Chunyi
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
- College of Life and Geographic Sciences, Kashi University, Kashi, 844000, People's Republic of China
| | - Sun Wei
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China.
| | - Wei Mingken
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Xia Chunyu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Li Changxiu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| |
Collapse
|
2
|
Jasmin MY, Isa NM, Kamarudin MS, Lim KC, Karim M. Evaluating Bacillus flexus as bioremediators for ammonia removal in shrimp culture water and wastewater and characterizing microbial communities in shrimp pond sludge. Braz J Microbiol 2024; 55:529-536. [PMID: 38280093 PMCID: PMC10920598 DOI: 10.1007/s42770-024-01246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024] Open
Abstract
The accumulation of nitrogen compounds in shrimp farming water and effluent presents a major challenge. Ammonia is a form of nitrogen that limits shrimp growth due to its potential toxicity and effects on shrimp health and water quality. This study is aimed at identifying promising bioremediators from shrimp pond sludge to mitigate ammonia levels in both culture water and wastewater and at determining major bacterial communities in sludge using metagenomic analysis. A sludge sample was collected from a shrimp pond in Selangor, Malaysia, to isolate potential ammonia-removing bacteria. Out of 64 isolated strains, Bacillus flexus SS2 showed the highest growth in synthetic basal media (SBM) containing ammonium sulfate at a concentration of 70 mg/L as the sole nitrogen source. The strain was then incubated in SBM with varying pH levels and showed optimal growth at pH 6.5-7. After 24 h of incubation, B. flexus SS2 reduced the ammonia concentration from an initial concentration of 5 to 0.01 mg/L, indicating a 99.61% reduction rate, which was highest in SBM at pH 7. Moreover, the strain showed ammonia removal ability at concentrations ranging from 5 to 70 mg/L. Metagenomic analysis revealed that Proteobacteria was the most abundant phylum in the sludge, followed by Cyanobacteria, Actinobacteria, Chloraflexi, Firmicutes, and Campilobacterota. Bacillus flexus SS2 belongs to the Bacillota phylum and has the potential to serve as a bioremediator for removing ammonia from shrimp culture water and wastewater.
Collapse
Affiliation(s)
- M Y Jasmin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - N Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - M S Kamarudin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
| | - K C Lim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
3
|
Huo J, Li X, Hu X, Lv A. Multi-omics analysis of miRNA-mediated intestinal microflora changes in crucian carp Carassius auratus infected with Rahnella aquatilis. Front Immunol 2024; 15:1335602. [PMID: 38426108 PMCID: PMC10902443 DOI: 10.3389/fimmu.2024.1335602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Infection by an emerging bacterial pathogen Rahnella aquatilis caused enteritis and septicemia in fish. However, the molecular pathogenesis of enteritis induced by R. aquatilis infection and its interacting mechanism of the intestinal microflora associated with microRNA (miRNA) immune regulation in crucian carp Carassius auratus are still unclear. In this study, C. auratus intraperitoneally injected with R. aquatilis KCL-5 was used as an experimental animal model, and the intestinal pathological changes, microflora, and differentially expressed miRNAs (DEMs) were investigated by multi-omics analysis. The significant changes in histopathological features, apoptotic cells, and enzyme activities (e.g., lysozyme (LYS), alkaline phosphatase (AKP), alanine aminotransferase (ALT), aspartate transaminase (AST), and glutathione peroxidase (GSH-Px)) in the intestine were examined after infection. Diversity and composition analysis of the intestinal microflora clearly demonstrated four dominant bacteria: Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes. A total of 87 DEMs were significantly screened, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes were mainly involved in the regulation of lipid, glutathione, cytosine, and purine metabolism, which participated in the local immune response through the intestinal immune network for IgA production, lysosome, and Toll-like receptor (TLR) pathways. Moreover, the expression levels of 11 target genes (e.g., TLR3, MyD88, NF-κB, TGF-β, TNF-α, MHC II, IL-22, LysC, F2, F5, and C3) related to inflammation and immunity were verified by qRT-PCR detection. The correlation analysis indicated that the abundance of intestinal Firmicutes and Proteobacteria was significantly associated with the high local expression of miR-203/NF-κB, miR-129/TNF-α, and miR-205/TGF-β. These findings will help to elucidate the molecular regulation mechanism of the intestinal microflora, inflammation, and immune response-mediated miRNA-target gene axis in cyprinid fish.
Collapse
Affiliation(s)
- Jiaxin Huo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiaowei Li
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
4
|
Song Z, Li K, Li K. Acute effects of the environmental probiotics Rhodobacter sphaeroides on intestinal bacteria and transcriptome in shrimp Penaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109316. [PMID: 38142021 DOI: 10.1016/j.fsi.2023.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
In recent years, a substantial number of studies have been dedicated to exploring the potential benefits of probiotics in aquaculture. Rhodobacter sphaeroides can be used in aquaculture-related environmental bioremediation, and its protein is also used as a feed additive in Penaeus vannamei culture. To investigate the effects of releasing R. sphaeroides as environmental probiotics on P. vannamei, we employed 16S rRNA gene and mRNA transcriptome sequencing. Our study focused on assessing alterations in intestinal bacteria and intestinal gene expression in P. vannamei, establishing correlations between them. Our findings revealed a significant increase in the relative abundances of Rhodobacter, Paracoccus, Sulfitobacter, and other bacterial OTUs within the intestinal bacterial community. Additionally, we observed enhanced complexity and stability in the intestinal bacterial correlation network, indicating improved synergy among bacteria and reduced competition. Moreover, the introduction of R. sphaeroides resulted in the down-regulation of certain immune genes and the up-regulation of genes linked to growth and metabolism in the intestinal tissues of P. vannamei. Importantly, we identified a noteworthy correlation between the changes in intestinal bacteria and these alterations in intestinal tissue gene expressions. By conducting analyses of the intestinal bacterial community and intestinal tissue transcriptome, this study revealed the effects of releasing R. sphaeroides as sediment probiotics in P. vannamei culture water. These results serve as vital scientific references for the application of R. sphaeroides in P. vannamei aquaculture.
Collapse
Affiliation(s)
- Zule Song
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kui Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Lalitha N, Ronald BSM, Chitra MA, Jangam AK, Katneni VK, Suganya PN, Senthilnayagam H, Senthilkumar TMA, Muralidhar M. Exploration of the candidate beneficial bacteria for Penaeus vannamei culture by core microbiome analysis using amplicon sequencing. Lett Appl Microbiol 2023; 76:ovad087. [PMID: 37541955 DOI: 10.1093/lambio/ovad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Globally, Penaeus vannamei is the vital species in aquaculture production. Beneficial bacterial exploration of gut, sediment, and water were investigated in P. vannamei culture using Illumina Miseq sequencing of 16S RNA V3-V4 hypervariable regions. Predominant phyla identified were Proteobacteria, Tenericutes, Bacteroidetes in gut; Proteobacteria, Bacteroidetes, Planctomycetes in sediment and Cyanobacteria, Proteobacteria, and Planctomycetes in water. In total, 46 phyla, 509 families and 902 genera; 70 phyla, 735 families and 1255 genera; 55 phyla, 580 families and 996 genera were observed in gut, sediment and water, respectively. Diversity of microbial communities in respect of observed Operational Taxonomic Units, diversity indices (Shannon and Simpson), richness index (Chao1) were significantly high P (<0.05) in 60 DoC in gut and 30 DoC in sediment. Beta diversity indicated separate clusters for bacterial communities in gut, sediment and water samples and formation of distinct community profiles. Core microbiome in P. vannamei rearing ponds over a time consisted of 9, 21, and 20 OTUs in gut, rearing water and sediment, respectively. This study helps to intervene with suitable beneficial microbes to establish an aquaculture system thereby contributes to enhance the productivity, improve water quality and pond bottom condition, and control the pathogenic agents at each stage of the culture.
Collapse
Affiliation(s)
- Natarajan Lalitha
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
- Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India
| | | | - Murugesan Ananda Chitra
- Centre for Animal Health Studies, Madhavaram Milk Colony, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, India
| | - Ashok Kumar Jangam
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
| | - Vinaya Kumar Katneni
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
| | - Panjan Nathamuni Suganya
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
| | - Hemalatha Senthilnayagam
- Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India
| | | | - Moturi Muralidhar
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
| |
Collapse
|
6
|
Devika NT, Katneni VK, Jangam AK, Suganya PN, Shekhar MS, Jithendran KP. In silico prediction of potential indigenous microbial biomarkers in Penaeus vannamei identified through meta-analysis and genome-scale metabolic modelling. ENVIRONMENTAL MICROBIOME 2023; 18:2. [PMID: 36631881 PMCID: PMC9835370 DOI: 10.1186/s40793-022-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Understanding the microbiome is crucial as it contributes to the metabolic health of the host and, upon dysbiosis, may influence disease development. With the recent surge in high-throughput sequencing technology, the availability of microbial genomic data has increased dramatically. Amplicon sequence-based analyses majorly profile microbial abundance and determine taxonomic markers. Furthermore, the availability of genome sequences for various microbial organisms has prompted the integration of genome-scale metabolic modelling that provides insights into the metabolic interactions influencing host health. However, the analysis from a single study may not be consistent, necessitating a meta-analysis. RESULTS We conducted a meta-analysis and integrated with constraint-based metabolic modelling approach, focusing on the microbiome of pacific white shrimp Penaeus vannamei, an extensively cultured marine candidate species. Meta-analysis revealed that Acinetobacter and Alteromonas are significant indicators of "health" and "disease" specific taxonomic biomarkers, respectively. Further, we enumerated metabolic interactions among the taxonomic biomarkers by applying a constraint-based approach to the community metabolic models (4416 pairs). Under different nutrient environments, a constraint-based flux simulation identified five beneficial species: Acinetobacter spWCHA55, Acinetobacter tandoii SE63, Bifidobacterium pseudolongum 49 D6, Brevundimonas pondensis LVF1, and Lutibacter profundi LP1 mediating parasitic interactions majorly under sucrose environment in the pairwise community. The study also reports the healthy biomarkers that can co-exist and have functionally dependent relationships to maintain a healthy state in the host. CONCLUSIONS Toward this, we collected and re-analysed the amplicon sequence data of P. vannamei (encompassing 117 healthy and 142 disease datasets). By capturing the taxonomic biomarkers and modelling the metabolic interaction between them, our study provides a valuable resource, a first-of-its-kind analysis in aquaculture scenario toward a sustainable shrimp farming.
Collapse
Affiliation(s)
- Neelakantan Thulasi Devika
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Vinaya Kumar Katneni
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India.
| | - Ashok Kumar Jangam
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Panjan Nathamuni Suganya
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Mudagandur Shashi Shekhar
- Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Karingalakkandy Poochirian Jithendran
- Aquatic Animal Health and Environment Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India
| |
Collapse
|
7
|
Chellapandi P. Development of top-dressing automation technology for sustainable shrimp aquaculture in India. DISCOVER SUSTAINABILITY 2021; 2:26. [PMID: 35425915 PMCID: PMC8142868 DOI: 10.1007/s43621-021-00036-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Globally, the shrimp farming industry faces increasing challenges and pressure to reduce the broken shrimps and maintain a healthier pond environment. Shrimps lack an adaptive immune system to combat invading pathogens due to an imbalance in beneficial gut microbiota. The use of top-dressing agents like probiotics and pond optimizes is an alternative strategy to improve the innate immune system leading produce disease-free shrimp in international markets. The cost of top-dressing agents is accounted for 20% of the production cost and therefore, the development of top-dressing automation technology is important to maintain and improve the financial and environmental viability of shrimp sustainable farming. This perspective described several sensor-based aquaculture technologies for on-farm management systems but sustainability in the aquaculture industry is not yet achieved in practice. The present technology is a new invention to reduce labor and production costs required for reducing bacterial and organic loads in Biofloc shrimp cultures. Aquaculture automation system disperses the top-dressing agents to the shrimp ponds based on the signals received from microbial and environmental sensors. Continuous monitoring of shrimp growth, mortality, immune responses, diseases, and pond water quality parameters will fetch larger profits with additional savings on labor and production costs for sustainable shrimp aquaculture in India.
Collapse
Affiliation(s)
- Paulchamy Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
| |
Collapse
|
8
|
Zhou A, Xie S, Zhang Y, Chuan J, Tang H, Li X, Zhang L, Xu G, Zou J. Interaction of environmental eukaryotic microorganisms and fungi in the pond-cultured carps: new insights into the potential pathogenic fungi in the freshwater aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38839-38854. [PMID: 33745047 DOI: 10.1007/s11356-021-13231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The quality and safety of the aquatic products have gradually become the focus of global attention. In this study, the environmental eukaryotic and fungi communities in pond-cultured grass carp (Ctenopharyngodon idellus) and the koi carp (Cyprinus carpio L.) were investigated. For comparative analysis, the alpha diversity shows that the environmental microbial abundance in the koi carp groups were higher than that in the grass carp groups, while beta diversity reveals that the differences of the microbial community composition and structures in the grass carp groups were significantly higher than those in the koi carp groups. Meanwhile, the environmental microbial diversity of grass carp groups was higher than that of koi carp groups at phylum level, but showed no significant difference at genus level. Additionally, the dominant total phyla were Opisthokonta, Stramenopiles plusAlveolates plusRhizaria, Archaeplastida, Cryptophyceae, and Centrohelida for the 18S rRNA gene and Ciliophora, Chlorophyta, and Ascomycota for the ITS2 rRNA gene in both of the two carp groups. Additionally, annotation analysis showed that the biomarkers in the grass carp groups are significantly higher than those of the koi carp groups. Furthermore, the functional prediction of Funguild showed significant difference in outputs, while similarity in trophic modes and guild types between the two carp groups. Meanwhile, the total relative abundances of animal pathogen, fungal parasite, and plant pathogen were extremely similar between the two carp groups. Surprisingly, one pathogenic fungus of genus Fusarium was identified in both the environments of two carp groups based on filtered operational taxonomic unit tables. Overall, this is the first robust report to understand the characteristics of environmental eukaryotic microorganisms and fungi in the edible and ornamental carps. Our results also provide the basic data for the prevention of fungal diseases and the healthy culture of the carps.
Collapse
Affiliation(s)
- Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A 5 T1, Canada
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Departments of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jiacheng Chuan
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A 5 T1, Canada
| | - Huijuan Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiang Li
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A 5 T1, Canada
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Li M, Rong L, Zhou S, Xiao X, Wu L, Fan Y, Lu C, Zou X. Dissipation of Sulfonamides in Soil Emphasizing Taxonomy and Function of Microbiomes by Metagenomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13594-13607. [PMID: 33172257 DOI: 10.1021/acs.jafc.0c04496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfonamides (SAs) are widespread in soils, and their dissipation behavior is important for their fate, risk assessment, and pollution control. In this work, we investigated the dissipation behavior of different SAs in a soil under aerobic condition, focusing on revealing the relationship between overall dissipation (without sterilization and in dark) and individual abiotic (sorption, hydrolysis)/biotic (with sterilization and in dark) factors and taxonomy/function of microbiomes. The results showed that dissipation of all SAs in the soil followed the pseudo-first-order kinetic model with dissipation time at 50% removal (DT50) of 2.16-15.27 days. Based on, experimentally, abiotic/biotic processes and, theoretically, partial least-squares modeling, a relationship between overall dissipation and individual abiotic/biotic factors was developed with microbial degradation as the dominant contributor. Metagenomic analysis showed that taxonomic genera like Bradyrhizobium/Sphingomonas/Methyloferula and functions like CAZy family GT51/GH23/GT2, eggNOG category S, KEGG pathway ko02024/ko02010, and KEGG ortholog K01999/K03088 are putatively involved in SA microbial degradation in soil. Spearman correlation suggests abundant genera being multifunctional. This study provides some new insights into SA dissipation and can be applied to other antibiotics/soils in the future.
Collapse
Affiliation(s)
- Mi Li
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Lingling Rong
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Shifan Zhou
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Xiaoyu Xiao
- School of Life Science, Jinggangshan University, Ji'an 343009, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an 343016, China
| | - Ligui Wu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Yuxing Fan
- School of Life Science, Jinggangshan University, Ji'an 343009, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Conghui Lu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
10
|
Holt CC, Bass D, Stentiford GD, van der Giezen M. Understanding the role of the shrimp gut microbiome in health and disease. J Invertebr Pathol 2020; 186:107387. [PMID: 32330478 DOI: 10.1016/j.jip.2020.107387] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
With rapid increases in the global shrimp aquaculture sector, a focus on animal health during production becomes ever more important. Animal productivity is intimately linked to health, and the gut microbiome is becoming increasingly recognised as an important driver of cultivation success. The microbes that colonise the gut, commonly referred to as the gut microbiota or the gut microbiome, interact with their host and contribute to a number of key host processes, including digestion and immunity. Gut microbiome manipulation therefore represents an attractive proposition for aquaculture and has been suggested as a possible alternative to the use of broad-spectrum antibiotics in the management of disease, which is a major limitation of growth in this sector. Microbiota supplementation has also demonstrated positive effects on growth and survival of several different commercial species, including shrimp. Development of appropriate gut supplements, however, requires prior knowledge of the host microbiome. Little is known about the gut microbiota of the aquatic invertebrates, but penaeid shrimp are perhaps more studied than most. Here, we review current knowledge of information reported on the shrimp gut microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of Proteobacteria within this community. We discuss involvement of the microbiome in the regulation of shrimp health and disease and describe how the gut microbiota changes with the introduction of several economically important shrimp pathogens. Finally, we explore evidence of microbiome supplementation and consider its role in the future of penaeid shrimp production.
Collapse
Affiliation(s)
- Corey C Holt
- International Centre of Excellence for Aquatic Animal Health Theme, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom; Biosciences, University of Exeter, Stocker Road, Exeter, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, United Kingdom; Department of Botany, University of British Columbia, Vancouver, Canada.
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health Theme, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health Theme, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Mark van der Giezen
- Biosciences, University of Exeter, Stocker Road, Exeter, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, United Kingdom; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|