1
|
Meng X, Kang M, Yu Z, Li C, Chen Y, Jin T, Wang K, Guo H. Synergistic antibacterial activity of baicalin in combination with oxacillin sodium against methicillin-resistant Staphylococcus aureus. FEBS Open Bio 2024. [PMID: 39676264 DOI: 10.1002/2211-5463.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/28/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a challenge for clinical treatment and combining antibiotics with other agents might be a promising strategy to overcome this challenge. This study explored the synergistic antibacterial activity of baicalin (traditional Chinese medicine extract) and the narrow-spectrum beta-lactam antibiotic oxacillin sodium, both of which are poorly active against MRSA in vitro. The combination of baicalin and oxacillin sodium showed a synergistic effect with a fractional inhibitory concentration index of 0.5. Mechanistically, the supplementation of baicalin increased the permeability of bacterial cell walls and cell membranes, enhancing oxacillin sodium entry and bactericidal action. The combination of baicalin and oxacillin sodium also significantly inhibited MRSA USA300 biofilm formation by further reducing polysaccharide intercellular adhesion production. Therefore, the combination of baicalin and oxacillin sodium offers a new therapeutic option for addressing clinical MRSA resistance. Further studies, including clinical trials, will be required to validate the observed in vitro results.
Collapse
Affiliation(s)
- Xin Meng
- College of Life Science, Jilin Normal University, Siping, China
| | - Mengna Kang
- College of Life Science, Jilin Normal University, Siping, China
| | - Zhiyun Yu
- College of Life Science, Jilin Normal University, Siping, China
| | - Changyou Li
- College of Life Science, Jilin Normal University, Siping, China
| | - Yang Chen
- College of Life Science, Jilin Normal University, Siping, China
| | - Taicheng Jin
- College of Life Science, Jilin Normal University, Siping, China
| | - Kai Wang
- RemeGen Co., Ltd., Yantai, China
| | - Haiyong Guo
- College of Life Science, Jilin Normal University, Siping, China
| |
Collapse
|
2
|
Yang M, Yang F, Guo Y, Liu F, Li Y, Qi Y, Guo L, He S. Molecular mechanism of Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia based on network pharmacology, molecular docking, molecular dynamics simulations and experimental verification. Front Vet Sci 2024; 11:1431233. [PMID: 39380772 PMCID: PMC11458528 DOI: 10.3389/fvets.2024.1431233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Mycoplasma bovis pneumonia is a highly contagious respiratory infection caused by Mycoplasma bovis. It is particularly prevalent in calves, posing a significant threat to animal health and leading to substantial economic losses. Dang-Shen-Yu-Xing decoction is often used to treat this condition in veterinary clinics. It exhibits robust anti-inflammatory effects and can alleviate pulmonary fibrosis. However, its mechanism of action remains unclear. Therefore, this study aimed to preliminarily explore the molecular mechanism of Dang-Shen-Yu-Xing decoction for treating mycoplasma pneumonia in calves through a combination of network pharmacology, molecular docking, molecular dynamics simulation methods, and experimental validation. The active components and related targets of Dang-Shen-Yu-Xing decoction were extracted from several public databases. Additionally, complex interactions between drugs and targets were explored through network topology, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Subsequently, the binding affinity of drug to disease-related targets was verified through molecular docking and molecular dynamics simulation. Finally, the pharmacodynamics were verified via animal experiments. The primary network topology analysis revealed two core targets and 10 key active components of Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the mechanism of Dang-Shen-Yu-Xing decoction for treating mycoplasma bovis pneumonia involved multiple signaling pathways, with the main pathways including PI3K-Akt and IL17 signaling pathways. Moreover, molecular docking predicted the binding affinity and conformation of the core targets of Dang-Shen-Yu-Xing decoction, IL6, and IL10, with the associated main active ingredients. The results showed a strong binding of the active ingredients to the hub target. Further, molecular docking dynamics simulation revealed three key active components of IL10 induced by Dang-Shen-Yu-Xing decoction against Mycoplasma bovis pneumonia. Finally, animal experiments confirmed Dang-Shen-Yu-Xing decoction pharmacodynamics, suggesting that it holds potential as an alternative therapy for treating mycoplasma bovis pneumonia.
Collapse
Affiliation(s)
- Mengmeng Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fei Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Yanan Guo
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Fan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - Yong Li
- College of Life Science and Technology, Ningxia Polytechnic, Yinchuan, Ningxia, China
| | - Yanrong Qi
- Agricultural and Rural Bureau of Helan County, Yinchuan, Ningxia, China
| | - Lei Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - Shenghu He
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Pathak D, Mazumder A. Potential of Flavonoids as Promising Phytotherapeutic Agents to Combat Multidrug-Resistant Infections. Curr Pharm Biotechnol 2024; 25:1664-1692. [PMID: 38031767 DOI: 10.2174/0113892010271172231108190233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Considering the limited number of current effective treatments, Multidrug- Resistant (MDR) illnesses have grown to be a serious concern to public health. It has become necessary to look for new antimicrobial drugs because of the emergence of resistance to numerous kinds of antibiotics. The use of flavonoids is one phytotherapeutic strategy that has been researched as a potential remedy for this issue. Secondary plant compounds called flavonoids have been found to have an antibacterial effect against resistant microorganisms. OBJECTIVE This review seeks to give readers a glimpse into contemporary studies on flavonoids' potential to fight MDR infections. METHODS A systematic search was conducted on electronic databases (PubMed, Scopus, and Google Scholar) using relevant keywords such as flavonoids, MDR infections, antimicrobial activity, and resistance microbes. Studies that investigated the antimicrobial activity of flavonoids against resistant microbes were included in this review. RESULTS Most research found that flavonoids have antibacterial efficacy against resistant microorganisms, and some also showed that they have synergistic benefits with traditional antibiotics. The flavonoids quercetin, kaempferol, apigenin, and luteolin were the most often investigated ones. According to research, flavonoids affect microbial gene expression, inhibit microbial enzymes, and disrupt the integrity of microbial cell membranes. Additionally, a few studies have noted the flavonoids' low toxicity and safety. CONCLUSION For the treatment of infections that are resistant to many drugs, flavonoids constitute a promising class of phytotherapeutic agents. To develop flavonoid-based treatment methods for treating MDR illnesses and assess the potential of flavonoids as adjuvants to conventional antimicrobial drugs, more study is required.
Collapse
Affiliation(s)
- Deepika Pathak
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| |
Collapse
|
4
|
Wang T, Jiang G, Lv S, Xiao Y, Fan C, Zou M, Wang Y, Guo Q, Ahsanul Kabir M, Peng X. Avian safety guardian: Luteolin restores Mycoplasma gallisepticum-induced immunocompromise to improve production performance via inhibiting the IL-17/NF-kB pathway. Int Immunopharmacol 2023; 124:110946. [PMID: 37717315 DOI: 10.1016/j.intimp.2023.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Mycoplasma gallisepticum (MG) is a major pathogen causing chronic respiratory disease (CRD) in chickens. Exposure to MG poses a constant threat to chicken health and causes substantial economic losses. Antibiotics are the main treatment for MG infections, but have to struggle with antibiotic residues and MG resistance. To date, no safe and more effective prevention or treatment for MG infections has been identified. Luteolin (Lut) is a natural flavonoid compound known for its excellent anti-viral, anti-bacterial, immunoregulatory, and anti-inflammatory pharmacological activities. Herein, we established an MG-infected model using partridge shank chickens and chicken-like macrophages (HD11 cells) to investigate the effect and potential mechanism of Lut against MG-induced immune damage. According to our findings, Lut significantly inhibited the expression of MG adhesion protein (pMGA1.2) in vivo and in vitro. Lut effectively mitigated the MG-induced decrease in body weight gain, feed conversion ratio, survival rate, and serum IgG and IgA levels. Lut directly repaired MG-induced spleen and thymus damage by histopathological analysis. Furthermore, network pharmacology analysis revealed that Lut most probably resisted MG infection through the IL-17/NF-kB pathway. In vivo and in vitro experiments, Lut significantly suppressed the increase in key protein IL-17A, TRAF6, p-p65, and p-IkBα in the IL-17/NF-kB pathway. Meanwhile, Lut markedly alleviated MG-induced the increase of pro-inflammatory cytokines TNF-α, IL-6, IL-1β, pro-apoptotic genes caspase3 and caspase9, while promoting the expression of anti-apoptotic genes Bcl-2 and Bcl-XL. In summary, Lut effectively suppressed MG colonization, alleviated MG-induced the production performance degradation, inflammatory responses, and immune damage by inhibiting the IL-17/ NF-kB pathway. This study indicates Lut can serve as a safe and effective antibiotic alternative drug for preventing and treating MG-induced CRD. It also provides new evidence to explore the molecular mechanisms of MG infection.
Collapse
Affiliation(s)
- Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyang Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufei Xiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyong Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Md Ahsanul Kabir
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Ivyna de Araújo Rêgo R, Guedes Silvestre GF, Ferreira de Melo D, Albino SL, Pimentel MM, Silva Costa Cruz SB, Silva Wurzba SD, Rodrigues WF, Goulart de Lima Damasceno BP, Cançado Castellano LR. Flavonoids-Rich Plant Extracts Against Helicobacter pylori Infection as Prevention to Gastric Cancer. Front Pharmacol 2022; 13:951125. [PMID: 36120379 PMCID: PMC9470917 DOI: 10.3389/fphar.2022.951125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Gastric cancer is the fifth most common and fourth type to cause the highest mortality rates worldwide. The leading cause is related to Helicobacter pylori (H. pylori) infection. Unfortunately, current treatments have low success rates, highlighting the need for alternative treatments against carcinogenic agents, specifically H. pylori. Noteworthy, natural origin products contain pharmacologically active metabolites such as flavonoids, with potential antimicrobial applications. Objective: This article overviews flavonoid-rich extracts’ biological and pharmacological activities. It focuses on using these substances against Helicobacter pylori infection to prevent gastric cancer. For this, PubMed and Science Direct databases were searched for studies that reported the activity of flavonoids against H. pylori, published within a 10-year time frame (2010 to August 2020). It resulted in 1,773 publications, of which 44 were selected according to the search criteria. The plant family primarily found in publications was Fabaceae (9.61%). Among the flavonoids identified after extraction, the most prevalent were quercetin (19.61%), catechin (13.72), epicatechin (11.76), and rutin (11.76). The potential mechanisms associated with anti-H. pylori activity to the extracts were: inhibition of urease, damage to genetic material, inhibition of protein synthesis, and adhesion of the microorganism to host cells. Conclusion: Plant extracts rich in flavonoids with anti-H. pylori potential proved to be a promising alternative therapy source, reinforcing the relevance of studies with natural products.
Collapse
Affiliation(s)
- Renaly Ivyna de Araújo Rêgo
- Human Immunology Research and Education Group-GEPIH, Federal University of Paraiba, João Pessoa, Brazil
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
- Postgraduate Program of Science and Technology in Health, State University of Paraíba, Campina Grande, Brazil
| | | | - Demis Ferreira de Melo
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
| | - Sonaly Lima Albino
- Postgraduate Program of Therapeutic Innovation, Federal University of Pernambuco, Recife, Brazil
| | - Marcela Monteiro Pimentel
- Postgraduate Program of Science and Technology in Health, State University of Paraíba, Campina Grande, Brazil
| | - Sara Brito Silva Costa Cruz
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, Brazil
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sabrina Daniela Silva Wurzba
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | | | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group-GEPIH, Federal University of Paraiba, João Pessoa, Brazil
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, Brazil
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Lúcio Roberto Cançado Castellano,
| |
Collapse
|
6
|
Li QQ, Chae HS, Kang OH, Kwon DY. Synergistic Antibacterial Activity with Conventional Antibiotics and Mechanism of Action of Shikonin against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23147551. [PMID: 35886892 PMCID: PMC9322759 DOI: 10.3390/ijms23147551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a troublesome pathogen that poses a global threat to public health. Shikonin (SKN) isolated from Lithospermum erythrorhizon (L. erythrorhizon) possesses a variety of biological activities. This study aims to explore the effect of the combined application of SKN and traditional antibiotics on the vitality of MRSA and the inherent antibacterial mechanism of SKN. The synergies between SKN and antibiotics against MRSA and its clinical strain have been demonstrated by the checkerboard assay and the time-kill assay. The effect of SKN on disrupting the integrity and permeability of bacterial cell membranes was verified by a nucleotide and protein leakage assay and a bacteriolysis assay. As determined by crystal violet staining, SKN inhibited the biofilm formation of clinical MRSA strains. The results of Western blot and qRT-PCR showed that SKN could inhibit the expression of proteins and genes related to drug resistance and S. aureus exotoxins. SKN inhibited the ability of RAW264.7 cells to release the pro-inflammatory cytokines TNF-α and IL-6, as measured by ELISA. Our findings suggest that SKN has the potential to be developed as a promising alternative for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
| | - Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA;
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K.)
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Jeonbuk, Korea;
- Correspondence: (O.-H.K.); (D.-Y.K.); Tel.: +82-63-850-6802 (O.-H.K.)
| |
Collapse
|
7
|
Luteolin Inhibits the Biofilm Formation and Cytotoxicity of Methicillin-Resistant Staphylococcus aureus via Decreasing Bacterial Toxin Synthesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4476339. [PMID: 35586693 PMCID: PMC9110164 DOI: 10.1155/2022/4476339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022]
Abstract
Owing to the fact that luteolin has antibacterial activity against Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), its specific mechanism in MRSA is worthy of investigation, which is the focus of this study. Initially, the collected S. aureus strains were treated with luteolin. Then, the minimum inhibitory concentration (MIC) of luteolin against the S. aureus strains was measured by the broth microdilution. The growth curves, biofilm formation, and cytotoxicity of treated S. aureus were detected using a microplate reader. The live and dead bacteria were evaluated using confocal laser scanning microscopy, the bacterial morphology was observed using scanning electron microscopy, and the S. aureus colony-forming unit (CFU) numbers were assessed. The levels of alpha hemolysin (α-hemolysin), delta hemolysin (δ-hemolysin), and hlaA were detected via western blot and RT-PCR. The mortality of mouse model with S. aureus systemic infection was analyzed, and the levels of IL-6, IL-8, IL-10, and TNF-α were quantitated using ELISA. Concretely, the MIC of luteolin against MRSA N315 was 64 μg/mL. Luteolin at 16 μg/mL did not affect the growth of MRSA N315, but inhibited the biofilm formation and CFU, and promoted the morphological changes and death of MRSA N315. Luteolin decreased the cytotoxicity and the levels of α-hemolysin, δ-hemolysin, and hlaA in MRSA N315, elevated MRSA-reduced mice survival rate, and differentially modulated the inflammatory cytokine levels in MRSA-infected mice. Collectively, luteolin inhibits biofilm formation and cytotoxicity of MRSA via blocking the bacterial toxin synthesis.
Collapse
|
8
|
Fan J, Sun H, Liu Y, Li X, Wu H, Ren X. Sanchen powder extract combined with vancomycin against methicillin-resistant Staphylococcus aureus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr Microbiol 2021; 78:3843-3852. [PMID: 34554299 DOI: 10.1007/s00284-021-02655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Primarily synthesized for chelating metal ions from the surrounding media, the pyomelanin plays an important role in bacterial virulence where it is needed for infection and biofilm formation as well as protection from host immune response. In this study, two out of three phenolic acids, gallic acid, and propyl gallate induced pyomelanin in two clinical isolates of Pseudomonas aeruginosa and inhibited biofilm formation. Ascorbic acid treatment reversed the gallic acid and propyl gallate mediated pyomelanin synthesis without reversing the inhibition of the biofilm formation. mRNA expression study revealed the upregulation of homogentisic acid oxidase enzyme by ascorbic acid treatment, possibly contributing towards the inhibition of pyomelanin synthesis. Tannic acid did not show any antibacterial or pyomelanin-induction activities. The synergistic effect of gallates and ascorbic acid in the inhibition of biofilm formation and associated pyomelanin synthesis was evidenced which needs further studies to establish their antibacterial efficacies, especially against the clinical isolates of Pseudomonas sp.
Collapse
|
10
|
Su T, Qiu Y, Hua X, Ye B, Luo H, Liu D, Qu P, Qiu Z. Novel Opportunity to Reverse Antibiotic Resistance: To Explore Traditional Chinese Medicine With Potential Activity Against Antibiotics-Resistance Bacteria. Front Microbiol 2020; 11:610070. [PMID: 33414777 PMCID: PMC7782309 DOI: 10.3389/fmicb.2020.610070] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is becoming significantly prominent and urgent in clinical practice with the increasing and wide application of antibacterial drugs. However, developing and synthesizing new antimicrobial drugs is costly and time-consuming. Recently, researchers shifted their sights to traditional Chinese medicine (TCM). Here, we summarized the inhibitory mechanism of TCM herbs and their active ingredients on bacteria, discussed the regulatory mechanism of TCM on antibiotic-resistant bacteria, and revealed preclinical results of TCM herbs and their active components against antibiotic-resistant bacteria in mouse models. Those data suggest that TCM herbs and their effective constituents exhibit potential blockage ability on antibiotic-resistant bacteria, providing novel therapeutic ideas for reversing antibiotic resistance.
Collapse
Affiliation(s)
- Ting Su
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Xuesi Hua
- College of Literature, Science and Arts University of Michigan, Ann Arbor, MI, United States
| | - Bi Ye
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| | - Peng Qu
- National Cancer Institute, Frederick, MD, United States
| | - Zhidong Qiu
- College of Pharmacy Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|