1
|
Rouhi A, Falah F, Azghandi M, Alizadeh Behbahani B, Tabatabaei-Yazdi F, Ibrahim SA, Dertli E, Vasiee A. Investigating the Effect of Melittin Peptide in Preventing Biofilm Formation, Adhesion and Expression of Virulence Genes in Listeria monocytogenes. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10318-z. [PMID: 38963508 DOI: 10.1007/s12602-024-10318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Listeria monocytogenes is a notable food-borne pathogen that has the ability to create biofilms on different food processing surfaces, making it more resilient to disinfectants and posing a greater risk to human health. This study assessed melittin peptide's anti-biofilm and anti-pathogenicity effects on L. monocytogenes ATCC 19115. Melittin showed minimum inhibitory concenteration (MIC) of 100 μg/mL against this strain and scanning electron microscopy images confirmed its antimicrobial efficacy. The OD measurement demonstrated that melittin exhibited a strong proficiency in inhibiting biofilms and disrupting pre-formed biofilms at concentrations ranging from 1/8MIC to 2MIC and this amount was 92.59 ± 1.01% to 7.17 ± 0.31% and 100% to 11.50 ± 0.53%, respectively. Peptide also reduced hydrophobicity and self-aggregation of L. monocytogenes by 35.25% and 14.38% at MIC. Melittin also significantly reduced adhesion to HT-29 and Caco-2 cells by 61.33% and 59%, and inhibited invasion of HT-29 and Caco-2 cells by 49.33% and 40.66% for L. monocytogenes at the MIC value. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) revealed melittin's impact on gene expression, notably decreasing inlB (44%) and agrA (45%) gene expression in L. monocytogenes. flaA and hly genes also exhibited reduced expression. Also, significant changes were observed in sigB and prfA gene expression. These results underscore melittin's potential in combating bacterial infections and biofilm-related challenges in the food industry.
Collapse
Affiliation(s)
- Arezou Rouhi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjan Azghandi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Farideh Tabatabaei-Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Salam A Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, E. Market Street, 1601, Greensboro, NC, 24711, USA
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul, 34210, Türkiye
| | - Alireza Vasiee
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
2
|
Sharma S, Raj K, Riyaz M, Singh DD. Antimicrobial Studies on Garlic Lectin. Probiotics Antimicrob Proteins 2023; 15:1501-1512. [PMID: 36316578 DOI: 10.1007/s12602-022-10001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Allium sativum agglutinin (ASA) is an important lectin isolated from garlic bulbs and has shown promising therapeutic potential in earlier reports. It has a bulb-type lectin domain, and members of this protein family have been investigated for anti-cancer, antimicrobial and other effects. In our earlier study, we have reported ASA as an anti-cancer agent, and in the present study, we have evaluated it for its antifungal and antimicrobial effects. The effects of ASA on the opportunistic pathogens in humans Candida auris and Candida glabrata fungal strains have been evaluated, and efforts are made to evaluate the mechanistic basis of these antifungal effects. The antifungal activity of ASA on different strains of C. glabrata and C. auris was found with MIC50 concentration range of 30-70 µg/ml. Fungal growth was significantly suppressed upon treatment with ASA at MIC50 and 2MIC50. Hydrogen peroxide production was detected after ASA treatment in fungal cells and cell morphology, and integrity was affected when analysed through FE-SEM. Further, the anti-biofilm effect of ASA was investigated against Candida and three bacterial strains (Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae), and promising results were obtained with maximal effect in case of K. pneumoniae among the bacterial strains. These results can form the basis for the development of ASA as antimicrobial agent.
Collapse
Affiliation(s)
- Shally Sharma
- Biotechnology Department, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Khem Raj
- Microbiology Department, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Mohammad Riyaz
- Microbiology Department, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Desh Deepak Singh
- Biotechnology Department, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Liu X, Du L, Yang X, Yin B, Wang L, Wang Y. Physicochemical properties of Tunisian pomegranate fruits Punica granatum L. grown at different climatic zones of Yunnan, China. Heliyon 2023; 9:e14791. [PMID: 37035371 PMCID: PMC10073889 DOI: 10.1016/j.heliyon.2023.e14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
The artificial cultivation of Mengzi pomegranate has been conducted on a large area for more than 30 years in Yunnan, China. As the quality of pomegranate cultivars have degraded seriously, new cultivars have gradually been introduced to meet market demand. Comparative quality evaluation of different pomegranate varieties is beneficial to guide cultivar improvement and cultural program modification. The present study investigated the differences of physicochemical characteristics of the introduced Tunisian soft-seed pomegranate in different climate zones in Yunnan, China. Meanwhile, the differences between native cultivars (Tian guan yan (TGY) and Tian lv zi (TLZ)) and introduced cultivar were also compared. It was found that the Tunisian soft-seed pomegranate grown in Huize (Tunisian pomegranate in Huize, TH) in the temperate plateau monsoon climate belt had the highest fruit weight, % of seed, TAC, TPC, TSS, amino acids, and Mn, and had the lowest organic acids and Na. While grown in the subtropical monsoon climate area Shiping (Tunisian pomegranate in Shiping, TS), the Tunisian pomegranate fruits had the highest amounts of Cu. Commonly, there were significant correlations between cultivation climate regions and fruit properties. The contents of the TSS, TAC, TPC, flavor amino acids and organic acids varied with planted climate zones. The introduced Tunisian soft-seed pomegranate has comparable levels of physicochemical characteristics with the local main cultivars in the same planted climate region. Tunisian soft-seed pomegranate of higher quality can be obtained in Huize area. Collectively, the climate difference and cultivar shift have a significant effect on pomegranate production in Yunnan, and pomegranate with good quality can be obtained by using proper cultivars in optimized climate zone.
Collapse
Affiliation(s)
- Xingyong Liu
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650203, China
| | - Lijuan Du
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650203, China
| | - Xukun Yang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650203, China
| | - Benlin Yin
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650203, China
| | - Luxiang Wang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650203, China
| | - Yunmei Wang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, 650203, China
| |
Collapse
|
4
|
Costa ACM, Malveira EA, Mendonça LP, Maia MES, Silva RRS, Roma RR, Aguiar TKB, Grangeiro YA, Souza PFN. Plant Lectins: A Review on their Biotechnological Potential Toward Human Pathogens. Curr Protein Pept Sci 2022; 23:851-861. [PMID: 36239726 DOI: 10.2174/1389203724666221014142740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
The indiscriminate use of antibiotics is associated with the appearance of bacterial resistance. In light of this, plant-based products treating infections are considered potential alternatives. Lectins are a group of proteins widely distributed in nature, capable of reversibly binding carbohydrates. Lectins can bind to the surface of pathogens and cause damage to their structure, thus preventing host infection. The antimicrobial activity of plant lectins results from their interaction with carbohydrates present in the bacterial cell wall and fungal membrane. The data about lectins as modulating agents of antibiotic activity, potentiates the effect of antibiotics without triggering microbial resistance. In addition, lectins play an essential role in the defense against fungi, reducing their infectivity and pathogenicity. Little is known about the antiviral activity of plant lectins. However, their effectiveness against retroviruses and parainfluenza is reported in the literature. Some authors still consider mannose/ glucose/N-Acetylglucosamine binding lectins as potent antiviral agents against coronavirus, suggesting that these lectins may have inhibitory activity against SARS-CoV-2. Thus, it was found that plant lectins are an alternative for producing new antimicrobial drugs, but further studies still need to decipher some mechanisms of action.
Collapse
Affiliation(s)
- Ana C M Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Ellen A Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Lidiane P Mendonça
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Maria E S Maia
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Renato R Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Yasmim A Grangeiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil.,Drug Research and Development Center, Department of Medicine, Federal University of Ceará, Caixa 60430- 275 Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Wen Y, Li W, Su R, Yang M, Zhang N, Li X, Li L, Sheng J, Tian Y. Multi-Target Antibacterial Mechanism of Moringin From Moringa oleifera Seeds Against Listeria monocytogenes. Front Microbiol 2022; 13:925291. [PMID: 35756047 PMCID: PMC9213813 DOI: 10.3389/fmicb.2022.925291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
Moringin [4-(α-L-rhamnosyloxy) benzyl isothiocyanate] is an isothiocyanate from Moringa oleifera seeds. It is the bioactivated form of the glucosinolate precursor glucomoringin with various health benefits. However, few studies have examined the antibacterial activity of moringin. This study aimed to investigate the antimicrobial activity and mechanism of moringin against Listeria monocytogenes. The minimum inhibitory concentration (MIC), and growth curves were used to evaluate the bacteriostatic effect of moringin against L. monocytogenes. Transcriptome analysis by RNA sequencing was performed to elucidate the underlying mechanism of moringin against L. monocytogenes. The transcriptome results were validated. The results showed that moringin inhibited the growth of L. monocytogenes with a MIC of 400 μM. RNA sequencing results showed that the differences in the expression of genes related to the cell wall and membrane biosynthesis, phosphotransferase system (PTS), oxidative stress, energy metabolism, and DNA binding were significantly affected. As with the transcriptome results, the results of the mechanism verification found that moringin damaged the integrity of the cell wall and cell membrane, stimulated oxidative stress, interfered with energy metabolism and DNA replication, and finally led to the death of L. monocytogenes. The present study provides evidence that moringin exhibits strong antimicrobial activity against L. monocytogenes and insight into its potential mechanism.
Collapse
Affiliation(s)
- Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Wenyun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Rongzhen Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Nan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ximing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Engineering Research Center of Drug and Food Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Engineering Research Center of Drug and Food Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Fonseca VJA, Braga AL, Filho JR, Teixeira CS, da Hora GCA, Morais-Braga MFB. A review on the antimicrobial properties of lectins. Int J Biol Macromol 2022; 195:163-178. [PMID: 34896466 DOI: 10.1016/j.ijbiomac.2021.11.209] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Lectins are biologically versatile biomolecules with remarkable antimicrobial effects, notably against bacteria, fungi and protozoa, in addition to modulating host immunity. For this, the lectins bind to carbohydrates on the surface of the pathogen, which can cause damage to the cell wall and prevent the attachment of microorganisms to host cells. Thus, this study intends to review the biological activities of lectins, with an emphasis on antimicrobial activity. Lectins of plant stood out for its antimicrobial effects, demonstrating that they act against a variety of strains, where in vitro were able to inhibit their development and affect their morphology. In vivo, they modulated host immunity, signaling and activating defense cells. Some of these lectins were capable to modulate the action of antibiotics, indicating their potential to minimize the antibiotic resistance. The results suggest that lectins have antimicrobial activity with potential to be used in drug development.
Collapse
Affiliation(s)
- Victor Juno Alencar Fonseca
- Laboratório de Micologia Aplicada do Cariri - LMAC, Universidade Regional do Cariri - URCA, Crato, CE, Brazil
| | - Ana Lays Braga
- Laboratório de Micologia Aplicada do Cariri - LMAC, Universidade Regional do Cariri - URCA, Crato, CE, Brazil
| | - Jaime Ribeiro Filho
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (Fiocruz), Salvador, Brazil
| | - Claudener Souza Teixeira
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil
| | - Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | | |
Collapse
|
7
|
Truong H, Garmyn D, Gal L, Fournier C, Sevellec Y, Jeandroz S, Piveteau P. Plants as a realized niche for Listeria monocytogenes. Microbiologyopen 2021; 10:e1255. [PMID: 34964288 PMCID: PMC8710918 DOI: 10.1002/mbo3.1255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes is a human pathogen. It is the causative agent of listeriosis, the leading cause of bacterial-linked foodborne mortality in Europe and elsewhere. Outbreaks of listeriosis have been associated with the consumption of fresh produce including vegetables and fruits. In this review we summarize current data providing direct or indirect evidence that plants can serve as habitat for L. monocytogenes, enabling this human pathogen to survive and grow. The current knowledge of the mechanisms involved in the interaction of this bacterium with plants is addressed, and whether this foodborne pathogen elicits an immune response in plants is discussed.
Collapse
Affiliation(s)
- Hoai‐Nam Truong
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | - Dominique Garmyn
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | - Laurent Gal
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | - Carine Fournier
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | - Yann Sevellec
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Salmonella and Listeria UnitParis‐Est UniversityMaisons‐AlfortCedexFrance
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | | |
Collapse
|