1
|
Szymańska J, Krzywicka M, Kobus Z, Malm A, Grzegorczyk A. The Influence of Selected Titanium Alloy Micro-Texture Parameters on Bacterial Adhesion. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4765. [PMID: 39410336 PMCID: PMC11477778 DOI: 10.3390/ma17194765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
The colonization of microbes and the resulting formation of biofilms on dental implants are significant contributors to peri-implantitis and the failure of these implants. The aim of the research was to analyze the impact of density and depth of laser texturing of the Ti-6Al-7Nb alloy surface on the colonization of selected microorganisms and biofilm formation. Standard strains of Gram-negative and Gram-positive bacteria and yeasts from the American Type Culture Collection-ATCC-were used to demonstrate the ability to form single-species biofilms in vitro. The study evaluated three types of titanium samples with different texture density and depth. The colonization and biofilm formation abilities of the tested microorganisms were assessed. The obtained results were subjected to statistical analysis. Among the analyzed strains, L. rhamnosus showed the highest colonization of the tested surfaces. It was found that there is no relationship between the texture parameters and the number of colony-forming units (CFU/mL) for C. albicans, S. mutans, and L. rhamnosus. For the F. nucleatum strain, it was shown that the number of colony-forming bacteria is related to the texture density.
Collapse
Affiliation(s)
- Jolanta Szymańska
- Chair of Comprehensive Dentistry, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Monika Krzywicka
- Department of Technology Fundamentals, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Zbigniew Kobus
- Department of Technology Fundamentals, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland; (A.M.); (A.G.)
| | - Agnieszka Grzegorczyk
- Chair and Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland; (A.M.); (A.G.)
| |
Collapse
|
2
|
Barylyak A, Wojnarowska-Nowak R, Kus-Liśkiewicz M, Krzemiński P, Płoch D, Cieniek B, Bobitski Y, Kisała J. Photocatalytic and antibacterial activity properties of Ti surface treated by femtosecond laser-a prospective solution to peri-implant disease. Sci Rep 2024; 14:20926. [PMID: 39251685 PMCID: PMC11385220 DOI: 10.1038/s41598-024-70103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specific architecture with specific bacteriological and photocatalytic properties. Femtosecond laser-generated surface structures, such as laser-induced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation effect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to influence the adhesion of the bacterial strain on different surfaces. On the laser-structurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.
Collapse
Affiliation(s)
- Adriana Barylyak
- Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine.
| | - Renata Wojnarowska-Nowak
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | | | - Piotr Krzemiński
- Institute of Physics, University of Rzeszow, 35-959, Rzeszow, Poland
| | - Dariusz Płoch
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | - Bogumił Cieniek
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | - Yaroslav Bobitski
- Institute of Physics, University of Rzeszow, 35-959, Rzeszow, Poland
- NoviNano Lab LLC, Pasternaka 5, Lviv, 79015, Ukraine
| | - Joanna Kisała
- Institute of Biology, University of Rzeszow, Zelwerowicza 4 Str., 35-601, Rzeszow, Poland.
| |
Collapse
|
3
|
Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2024; 14:17303. [PMID: 39068252 PMCID: PMC11283573 DOI: 10.1038/s41598-024-68266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
Collapse
Affiliation(s)
- Jana Šístková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tatiana Fialová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Emil Svoboda
- Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
| | - Kateřina Varmužová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin Uher
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristýna Číhalová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
4
|
Saran R, Ginjupalli K, George SD, Chidangil S, V K U. LASER as a tool for surface modification of dental biomaterials: A review. Heliyon 2023; 9:e17457. [PMID: 37408894 PMCID: PMC10319194 DOI: 10.1016/j.heliyon.2023.e17457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
In recent years, the application of lasers for modifying the surface topography of dental biomaterials has received increased attention. This review paper aims to provide an overview of the current status on the utilization of lasers as a potential tool for surface modification of dental biomaterials such as implants, ceramics, and other materials used for restorative purposes. A literature search was done for articles related to the use of lasers for surface modification of dental biomaterials in English language published between October 2000 and March 2023 in Scopus, Pubmed and web of science, and relevant articles were reviewed. Lasers have been mainly used for surface modification of implant materials (71%), especially titanium and its alloys, to promote osseointegration. In recent years, laser texturing has also emerged as a promising technique to reduce bacterial adhesion on titanium implant surfaces. Currently, lasers are being widely used for surface modifications to improve osseointegration and reduce peri-implant inflammation of ceramic implants and to enhance the retention of ceramic restorations to the tooth. The studies considered in this review seem to suggest laser texturing to be more proficient than the conventional methods of surface modification. Lasers can alter the surface characteristics of dental biomaterials by creating innovative surface patterns without significantly affecting their bulk properties. With advances in laser technology and availability of newer wavelengths and modes, laser as a tool for surface modification of dental biomaterials is a promising field, with excellent potential for future research.
Collapse
Affiliation(s)
- Runki Saran
- Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kishore Ginjupalli
- Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sajan D. George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Unnikrishnan V K
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
5
|
Simões IG, dos Reis AC, Valente MLDC. Influence of surface treatment by laser irradiation on bacterial adhesion on surfaces of titanium implants and their alloys: Systematic review. Saudi Dent J 2023; 35:111-124. [PMID: 36942202 PMCID: PMC10024099 DOI: 10.1016/j.sdentj.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Objective The aim of this systematic review was to present the current knowledge on the influence of laser surface treatment on the adhesion of bacteria to titanium and its alloys. Design This review was structured according to PRISMA guidelines for systematic reviews and meta-analyses, and registered on the Open Science Framework platform (https://doi.org/10.17605/OSF.IO/FTA3W). Article searches were performed in 4 databases: PubMed, Scopus, Embase, and Science Direct. In addition, a manual search was performed in the reference lists of the selected articles. The selection of articles was performed by two reviewers. The articles found were screened for eligibility using the previously established inclusion and exclusion criteria. The methodological quality of the studies was assessed using the Joanna Briggs Institute (JBI) Critical Assessment Checklist for Quasi-Experimental Studies (non-randomized experimental studies). Results Most of the studies evaluated showed that surface treatment by laser irradiation can affect the adhesion of bacteria to titanium surfaces and that this is directly related to changes in surface properties such as chemical composition, morphology, roughness, and wettability, as well as the type of bacterial species involved. Conclusions The studies considered in this systematic review have shown that surface treatment by laser irradiation is a promising technique to reduce the adhesion of bacteria on the surface of titanium implants.
Collapse
Affiliation(s)
- Isadora Gazott Simões
- Ribeirão Preto Dental School, University of São Paulo, (USP), Ribeirão Preto, São Paulo, Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo, (USP), Ribeirão Preto, São Paulo, Brazil
| | - Mariana Lima da Costa Valente
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo, (USP), Ribeirão Preto, São Paulo, Brazil
- Corresponding author at: Mariana Lima da Costa Valente, Ribeirão Preto Dental School, Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Bacterial Response to the Surface Aging of PLA Matrices Loaded with Active Compounds. Polymers (Basel) 2022; 14:polym14224976. [PMID: 36433103 PMCID: PMC9698402 DOI: 10.3390/polym14224976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The use of active components in biomaterials improves the properties of existing ones and makes it possible to obtain new devices with antibacterial properties that prevent infections after implantation, thus guaranteeing the success of the implant. In this work, cetyltrimethylammonium bromide (CTAB) and magnesium particles were incorporated into polylactic acid (PLA) films to assess the extent to which progressive aging of the new surfaces resists bacterial colonization processes. For this purpose, the films' surface was characterized by contact angle measurements, ToF-SIMS and AFM, and adhesion, viability and biofilm growth of Staphylococcus epidermidis bacteria on these films were also evaluated. The results show that the inclusion of Mg and CTAB in PLA films changes their surface properties both before and after aging and also modifies bacterial adhesion on the polymer. Complete bactericidal activity is exhibited on non-degraded films and films with CTAB. This antibacterial behavior is maintained after degradation for three months in the case of films containing a higher amount of CTAB.
Collapse
|
7
|
Shi Y, Chen T, Shaw P, Wang PY. Manipulating Bacterial Biofilms Using Materiobiology and Synthetic Biology Approaches. Front Microbiol 2022; 13:844997. [PMID: 35875573 PMCID: PMC9301480 DOI: 10.3389/fmicb.2022.844997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria form biofilms on material surfaces within hours. Biofilms are often considered problematic substances in the fields such as biomedical devices and the food industry; however, they are beneficial in other fields such as fermentation, water remediation, and civil engineering. Biofilm properties depend on their genome and the extracellular environment, including pH, shear stress, and matrices topography, stiffness, wettability, and charges during biofilm formation. These surface properties have feedback effects on biofilm formation at different stages. Due to emerging technology such as synthetic biology and genome editing, many studies have focused on functionalizing biofilm for specific applications. Nevertheless, few studies combine these two approaches to produce or modify biofilms. This review summarizes up-to-date materials science and synthetic biology approaches to controlling biofilms. The review proposed a potential research direction in the future that can gain better control of bacteria and biofilms.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingli Chen
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
8
|
Schulze M, Fobker M, Puetzler J, Hillebrand J, Niemann S, Schulte E, Kurzynski J, Gosheger G, Hasselmann J. Mechanical and microbiological testing concept for activatable anti-infective biopolymer implant coatings. BIOMATERIALS ADVANCES 2022; 138:212917. [PMID: 35913227 DOI: 10.1016/j.bioadv.2022.212917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
An anti-infective bilayer implant coating with selectively activatable properties was developed to prevent biofilm formation and to support the treatment of periprosthetic infection as a local adjunct to current treatment concepts. In a first step, Ti6Al4V discs were coated with a permanent layer of Poly(l-lactide) (PLLA) including silver ions. The PLLA could be optionally released by the application of extracorporeal shock waves. In a second step, a resorbable layer of triglyceride (TAG) with incorporated antibiotics was applied. The second layer is designed for resorption within weeks. Prior to approval and clinical application, a comprehensive evaluation process to determine mechanical/physical and microbiological properties is obligate. To date, none of the existing test standards covers both drug-releasing and activatable coatings for orthopedic implants. Therefore, a comprehensive test concept was developed to characterize the new coating in a pilot series. The coatings were homogeneously applied on the Ti6Al4V substrate, resulting in an adhesion strength sufficient for non-articulating surfaces for PLLA. Proof of the extracorporeal shockwave activation of PLLA was demonstrated both mechanically and microbiologically, with a simultaneous increase of biocompatibility compared to standard electroplated silver coating. Wettability was significantly reduced for both layers in comparison to the Ti6Al4V substrate. Thus, potentially inhibiting biofilm formation. Furthermore, the TAG coating promoted cell proliferation and bacterial eradication. In conclusion, the testing concept is applicable for similar biopolymer coating systems. Furthermore, the extracorporeal activation could represent a completely new supportive approach for the treatment of periprosthetic joint infections.
Collapse
Affiliation(s)
- Martin Schulze
- Clinic for General Orthopedics and Tumororthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Manfred Fobker
- Central Laboratory, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Jan Puetzler
- Clinic for General Orthopedics and Tumororthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Jule Hillebrand
- Clinic for General Orthopedics and Tumororthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Muenster, Domagkstraße 10, 48149 Muenster, Germany
| | - Erhard Schulte
- Central Laboratory, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Jochen Kurzynski
- Materials Engineering Laboratory, Department of Mechanical Engineering, University of Applied Sciences Muenster, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| | - Georg Gosheger
- Clinic for General Orthopedics and Tumororthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Julian Hasselmann
- Clinic for General Orthopedics and Tumororthopedics, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany; Materials Engineering Laboratory, Department of Mechanical Engineering, University of Applied Sciences Muenster, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| |
Collapse
|
9
|
Richter AM, Buchberger G, Stifter D, Duchoslav J, Hertwig A, Bonse J, Heitz J, Schwibbert K. Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3000. [PMID: 34835763 PMCID: PMC8624992 DOI: 10.3390/nano11113000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different sub-micrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here.
Collapse
Affiliation(s)
- Anja M. Richter
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (A.H.); (J.B.); (K.S.)
| | - Gerda Buchberger
- Institute of Applied Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (J.H.)
| | - David Stifter
- Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (D.S.); (J.D.)
| | - Jiri Duchoslav
- Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (D.S.); (J.D.)
| | - Andreas Hertwig
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (A.H.); (J.B.); (K.S.)
| | - Jörn Bonse
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (A.H.); (J.B.); (K.S.)
| | - Johannes Heitz
- Institute of Applied Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (J.H.)
| | - Karin Schwibbert
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (A.H.); (J.B.); (K.S.)
| |
Collapse
|
10
|
Infections @ Trauma/Orthopedic Implants: Recent Advances on Materials, Methods, and Microbes-A Mini-Review. MATERIALS 2021; 14:ma14195834. [PMID: 34640231 PMCID: PMC8510481 DOI: 10.3390/ma14195834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
Implants and materials are indispensable in trauma and orthopedic surgery. The continuous improvements of implant design have resulted in an optimized mechanical function that supports tissue healing and restoration of function. One of the still unsolved problems with using implants and materials is infection. Trauma and material implantation change the local inflammatory situation and enable bacterial survival and material colonization. The main pathogen in orthopedic infections is Staphylococcus aureus. The research efforts to optimize antimicrobial surfaces and to develop new anti-infective strategies are enormous. This mini-review focuses on the publications from 2021 with the keywords S. aureus AND (surface modification OR drug delivery) AND (orthopedics OR trauma) AND (implants OR nails OR devices). The PubMed search yielded 16 original publications and two reviews. The original papers reported the development and testing of anti-infective surfaces and materials: five studies described an implant surface modification, three developed an implant coating for local antibiotic release, the combination of both is reported in three papers, while five publications are on antibacterial materials but not metallic implants. One review is a systematic review on the prevention of stainless-steel implant-associated infections, the other addressed the possibilities of mixed oxide nanotubes. The complexity of the approaches differs and six of them showed efficacy in animal studies.
Collapse
|
11
|
Paulitsch-Fuchs AH, Wolrab L, Eck N, Dyer NP, Bödendorfer B, Lohberger B. TiAl6V4 Alloy Surface Modifications and Their Impact on Biofilm Development of S. aureus and S. epidermidis. J Funct Biomater 2021; 12:36. [PMID: 34069837 PMCID: PMC8162351 DOI: 10.3390/jfb12020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023] Open
Abstract
One of the most serious complications following joint replacement surgeries are periprosthetic infections (PIs) arising from the adhesion of bacteria to the artificial joint. Various types of titanium-aluminum-vanadium (TiAl6V4) alloy surface modifications (coatings with silver (Ag), titanium nitride (TiN), pure titanium (cpTi), combinations of cpTi and hydroxyapatite (HA), combinations of cpTi and tricalcium phosphate (TCP), and a rough-blasted surface of TiAl6V4) have been investigated to assess their effects on biofilm development. Biofilms were grown, collected, and analyzed after 48 h to measure their protein and glucose content and the cell viability. Biofilm-associated genes were also monitored after 48 h of development. There was a distinct difference in the development of staphylococcal biofilms on the surfaces of the different types of alloy. According to the findings of this study, the base alloy TiAl6V4 and the TiN-coated surface are the most promising materials for biofilm reduction. Rough surfaces are most favorable when it comes to bacterial infections because they allow an easy attachment of pathogenic organisms. Of all rough surfaces tested, rough-blasted TiAl6V4 was the most favorable as an implantation material; all the other rough surfaces showed more distinct signs of inducing the development of biofilms which displayed higher protein and polysaccharide contents. These results are supported by RT-qPCR measurements of biofilm associated genes for Staphylococcus aureus (icaA, icaC, fnbA, fnbB, clfB, atl) and Staphylococcus epidermidis (atle, aap).
Collapse
Affiliation(s)
- Astrid H. Paulitsch-Fuchs
- Biomedical Sciences, University of Applied Sciences Carinthia, 9020 Klagenfurt, Austria; (A.H.P.-F.); (L.W.); (B.B.)
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Lukas Wolrab
- Biomedical Sciences, University of Applied Sciences Carinthia, 9020 Klagenfurt, Austria; (A.H.P.-F.); (L.W.); (B.B.)
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria;
| | - Nigel P. Dyer
- Bioinformatics Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK;
| | - Benjamin Bödendorfer
- Biomedical Sciences, University of Applied Sciences Carinthia, 9020 Klagenfurt, Austria; (A.H.P.-F.); (L.W.); (B.B.)
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria;
| |
Collapse
|