1
|
Catania S, Bottinelli M, Fincato A, Tondo A, Matucci A, Nai G, Righetti V, Abbate F, Ramírez AS, Gobbo F, Merenda M. Pathogenic avian mycoplasmas show phenotypic differences in their biofilm forming ability compared to non-pathogenic species in vitro. Biofilm 2024; 7:100190. [PMID: 38515541 PMCID: PMC10955283 DOI: 10.1016/j.bioflm.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Mycoplasmas are known as the minimalist microorganisms in the microbes' world. Their minimalist nature makes them highly sensitive to the environmental conditions and limits their ability to survive for extended periods outside their animal host. Nevertheless, there are documented instances of mycoplasma transmission over significant distances and this phenomenon may be linked to relatively unexplored abilities of mycoplasmas, such as their capacity to synthesize biofilm-the predominant mode of bacterial growth in nature. The authors decided to establish a method aimed at inducing the clustering of mycoplasma planktonic cells within a biofilm in vitro and subsequently assess the capacity of certain avian mycoplasmas to synthesize a biofilm. A total of 299 avian mycoplasma isolates were included in the study, encompassing both pathogenic (Mycoplasma gallisepticum, M. synoviae, M. meleagridis, M. iowae) and non-pathogenic species (M. gallinaceum, M. gallinarum, M. iners and M. pullorum). The authors successfully demonstrated the feasibility of inducing avian mycoplasmas to synthetize in vitro a biofilm, which can be visually quantified. The only species that did not produce any biofilm was M. iowae. In general, the pathogenic mycoplasmas produced greater quantities of biofilm compared to the non-pathogenic ones. Furthermore, it was observed that the ability to produce biofilm appeared to vary, both qualitatively and quantitatively, not only among different species but also among isolates of a single species. Future studies will be necessary to determine whether biofilm production plays a pivotal epidemiological role for the pathogenic avian mycoplasmas.
Collapse
Affiliation(s)
- Salvatore Catania
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Marco Bottinelli
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Alice Fincato
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Annalucia Tondo
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Andrea Matucci
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Giorgia Nai
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Verdiana Righetti
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Francesco Abbate
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168, Messina, ME, Italy
| | - Ana S. Ramírez
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Federica Gobbo
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Marianna Merenda
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| |
Collapse
|
2
|
Liu W, Yang T, Kong Y, Xie X, Ruan Z. Ureaplasma infections: update on epidemiology, antimicrobial resistance, and pathogenesis. Crit Rev Microbiol 2024:1-31. [PMID: 38794781 DOI: 10.1080/1040841x.2024.2349556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Human Ureaplasma species are being increasingly recognized as opportunistic pathogens in human genitourinary tract infections, infertility, adverse pregnancy, neonatal morbidities, and other adult invasive infections. Although some general reviews have focused on the detection and clinical manifestations of Ureaplasma spp., the molecular epidemiology, antimicrobial resistance, and pathogenesis of Ureaplasma spp. have not been adequately explained. The purpose of this review is to offer valuable insights into the current understanding and future research perspectives of the molecular epidemiology, antimicrobial resistance, and pathogenesis of human Ureaplasma infections. This review summarizes the conventional culture and detection methods and the latest molecular identification technologies for Ureaplasma spp. We also reviewed the global prevalence and mechanisms of antibiotic resistance for Ureaplasma spp. Aside from regular antibiotics, novel antibiotics with outstanding in vitro antimicrobial activity against Ureaplasma spp. are described. Furthermore, we discussed the pathogenic mechanisms of Ureaplasma spp., including adhesion, proinflammatory effects, cytotoxicity, and immune escape effects, from the perspectives of pathology, related molecules, and genetics.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Ting Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yingying Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Ureaplasma-Driven Neonatal Neuroinflammation: Novel Insights from an Ovine Model. Cell Mol Neurobiol 2023; 43:785-795. [PMID: 35334011 PMCID: PMC9957905 DOI: 10.1007/s10571-022-01213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
Ureaplasma species (spp.) are considered commensals of the adult genitourinary tract, but have been associated with chorioamnionitis, preterm birth, and invasive infections in neonates, including meningitis. Data on mechanisms involved in Ureaplasma-driven neuroinflammation are scarce. The present study addressed brain inflammatory responses in preterm lambs exposed to Ureaplasma parvum (UP) in utero. 7 days after intra-amniotic injection of UP (n = 10) or saline (n = 11), lambs were surgically delivered at gestational day 128-129. Expression of inflammatory markers was assessed in different brain regions using qRT-PCR and in cerebrospinal fluid (CSF) by multiplex immunoassay. CSF was analyzed for UP presence using ureB-based real-time PCR, and MRI scans documented cerebral white matter area and cortical folding. Cerebral tissue levels of atypical chemokine receptor (ACKR) 3, caspases 1-like, 2, 7, and C-X-C chemokine receptor (CXCR) 4 mRNA, as well as CSF interleukin-8 protein concentrations were significantly increased in UP-exposed lambs. UP presence in CSF was confirmed in one animal. Cortical folding and white matter area did not differ among groups. The present study confirms a role of caspases and the transmembrane receptors ACKR3 and CXCR4 in Ureaplasma-driven neuroinflammation. Enhanced caspase 1-like, 2, and 7 expression may reflect cell death. Increased ACKR3 and CXCR4 expression has been associated with inflammatory central nervous system (CNS) diseases and impaired blood-brain barrier function. According to these data and previous in vitro findings from our group, we speculate that Ureaplasma-induced caspase and receptor responses affect CNS barrier properties and thus facilitate neuroinflammation.
Collapse
|
4
|
First-Void Urine Microbiome in Women with Chlamydia trachomatis Infection. Int J Mol Sci 2022; 23:ijms23105625. [PMID: 35628436 PMCID: PMC9143427 DOI: 10.3390/ijms23105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Chlamydia trachomatis (CT) is the agent of the most common bacterial sexually transmitted infection worldwide. Until now, little information is available about the microbial composition of urine samples during CT urethritis. Therefore, in this study, we characterized the microbiome and metabolome profiles of first-void urines in a cohort of women with CT urethral infection attending an STI clinic. Methods: Based on CT positivity by nucleic acid amplification techniques on urine samples, the enrolled women were divided into two groups, i.e., “CT-negative” (n = 21) and “CT-positive” (n = 11). Urine samples were employed for (i) the microbiome profile analysis by means of 16s rRNA gene sequencing and (ii) the metabolome analysis by 1H-NMR. Results: Irrespective of CT infection, the microbiome of first-void urines was mainly dominated by Lactobacillus, L. iners and L. crispatus being the most represented species. CT-positive samples were characterized by reduced microbial biodiversity compared to the controls. Moreover, a significant reduction of the Mycoplasmataceae family—in particular, of the Ureaplasma parvum species—was observed during CT infection. The Chlamydia genus was positively correlated with urine hippurate and lactulose. Conclusions: These data can help elucidate the pathogenesis of chlamydial urogenital infections, as well as to set up innovative diagnostic and therapeutic approaches.
Collapse
|