1
|
Fanai A, Bohia B, Lalremruati F, Lalhriatpuii N, Lalrokimi, Lalmuanpuii R, Singh PK, Zothanpuia. Plant growth promoting bacteria (PGPB)-induced plant adaptations to stresses: an updated review. PeerJ 2024; 12:e17882. [PMID: 39184384 PMCID: PMC11344539 DOI: 10.7717/peerj.17882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Plants and bacteria are co-evolving and interact with one another in a continuous process. This interaction enables the plant to assimilate the nutrients and acquire protection with the help of beneficial bacteria known as plant growth-promoting bacteria (PGPB). These beneficial bacteria naturally produce bioactive compounds that can assist plants' stress tolerance. Moreover, they employ various direct and indirect processes to induce plant growth and protect plants against pathogens. The direct mechanisms involve phytohormone production, phosphate solubilization, zinc solubilization, potassium solubilization, ammonia production, and nitrogen fixation while, the production of siderophores, lytic enzymes, hydrogen cyanide, and antibiotics are included under indirect mechanisms. This property can be exploited to prepare bioformulants for biofertilizers, biopesticides, and biofungicides, which are convenient alternatives for chemical-based products to achieve sustainable agricultural practices. However, the application and importance of PGPB in sustainable agriculture are still debatable despite its immense diversity and plant growth-supporting activities. Moreover, the performance of PGPB varies greatly and is dictated by the environmental factors affecting plant growth and development. This review emphasizes the role of PGPB in plant growth-promoting activities (stress tolerance, production of bioactive compounds and phytohormones) and summarises new formulations and opportunities.
Collapse
Affiliation(s)
- Awmpuizeli Fanai
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | | | | | - Nancy Lalhriatpuii
- Department of Biotechnology/Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| | - Lalrokimi
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | | | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| |
Collapse
|
2
|
Su XX, Wan TT, Gao YD, Zhang SH, Chen X, Huang LQ, Wang W. Action mechanism of the potential biocontrol agent Brevibacillus laterosporus SN19-1 against Xanthomonas oryzae pv. oryzae causing rice bacterial leaf blight. Arch Microbiol 2023; 206:40. [PMID: 38142456 DOI: 10.1007/s00203-023-03754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
The causal agent of rice bacterial leaf blight (BLB) is Xanthomonas oryzae pv. oryzae (Xoo), which causes serious damage to rice, leading to yield reduction or even crop failure. Brevibacillus laterosporus SN19-1 is a biocontrol strain obtained by long-term screening in our laboratory, which has a good antagonistic effect on a variety of plant pathogenic bacteria. In this study, we investigated the efficacy and bacterial inhibition of B. laterosporus SN19-1 against BLB to lay the theoretical foundation and research technology for the development of SN19-1 as a biopesticide of BLB. It was found that SN19-1 has the ability to fix nitrogen, detoxify organic phosphorus, and produce cellulase, protease, and siderophores, as well as IAA. In a greenhouse pot experiment, the control efficiency of SN19-1 against BLB was as high as 90.92%. Further investigation of the inhibitory mechanism of SN19-1 on Xoo found that the biofilm formation ability of Xoo was inhibited and the pathogenicity was weakened after the action of SN19-1 sterile supernatant on Xoo. The activities of enzymes related to respiration and the energy metabolism of Xoo were significantly inhibited, while the level of intracellular reactive oxygen species was greatly increased. Scanning electron microscopy observations showed folds on the surface of Xoo. A significant increase in cell membrane permeability and outer membrane permeability and a decrease in cell membrane fluidity resulted in the extravasation of intracellular substances and cell death. The results of this study highlight the role of B. laterosporus SN19-1 against the pathogen of BLB and help elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xin-Xin Su
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tian-Tian Wan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong-Dong Gao
- Agriculture Technology Extension Service Center of Shanghai, Shanghai, 201103, China
| | - Song-Han Zhang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai, 201103, China
| | - Xiu Chen
- Agriculture Technology Extension Service Center of Shanghai, Shanghai, 201103, China
| | - Lan-Qi Huang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai, 201103, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Liu Y, Ning Y, Chen Z, Han P, Zhi T, Li S, Ma A, Jia Y. Transcriptomics reveals substance biosynthesis and transport on membranes of Listeria monocytogenes affected by antimicrobial lipopeptide brevilaterin B. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches. Food Chem 2023; 403:134419. [DOI: 10.1016/j.foodchem.2022.134419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
|
5
|
Yu F, Shen Y, Qin Y, Pang Y, Fan H, Peng J, Pei X, Liu X. Isolation and purification of antibacterial lipopeptides from Bacillus velezensis YA215 isolated from sea mangroves. Front Nutr 2022; 9:1064764. [PMID: 36505249 PMCID: PMC9730517 DOI: 10.3389/fnut.2022.1064764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
The increasing burden and health risks of antimicrobial resistance (AMR) pose a great threat to society overall. Lipopeptides exhibit great potential as novel and safe alternatives to traditional antibiotics. In this study, the strain YA215, which was isolated from the mangrove area in Beibu Gulf, Guangxi, China, was identified as Bacillus velezensis. Then, YA215 lipopeptide extracts (YA215LE) from B. velezensis was found to exhibit a wide spectrum of antibacterial and antifungal activities. Additionally, YA215LE was identified and found to contain three groups of lipopeptides (surfactin, iturin, and fengycin). Furthermore, one separation fraction (BVYA1) with significant antibacterial activity was obtained. Additionally, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of BVYA1 showed three molecular ion peaks ([M + H]+: m/z 980.62; 994.66; 1008.66) corresponding to conventional surfactin homologs. By MS/MS analysis, BVYA1 was identified as sufactin with the precise amino acid sequence Glu-Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile and hydroxyl fatty acids with 11-13 carbons. [M + H]+ at m/z 980.62 was detected for the first time in B. velezensis, which demonstrates that the strain corresponds to a new surfactin variant. In particular, BVYA1 showed antibacterial activity with the minimum inhibitory concentration (MIC) values of 7.5-15 μg/ml. Finally, the preliminary mechanism of inhibiting E. coli treated with BVYA1 showed that BVYA1 effectively permeabilized the cytoplasmic membrane and disrupted the morphology of targeted bacterial cells. In conclusion, this study suggests that the YA215LE from B. velezensis YA215 might be a potential candidate for a bactericide.
Collapse
|
6
|
El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, El-Tahan AM, Ebrahim AAM, Abd El-Mageed TA, Negm SH, Selim S, Babalghith AO, Elrys AS, El-Tarabily KA, AbuQamar SF. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:923880. [PMID: 36275556 PMCID: PMC9583655 DOI: 10.3389/fpls.2022.923880] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Plant diseases and pests are risk factors that threaten global food security. Excessive chemical pesticide applications are commonly used to reduce the effects of plant diseases caused by bacterial and fungal pathogens. A major concern, as we strive toward more sustainable agriculture, is to increase crop yields for the increasing population. Microbial biological control agents (MBCAs) have proved their efficacy to be a green strategy to manage plant diseases, stimulate plant growth and performance, and increase yield. Besides their role in growth enhancement, plant growth-promoting rhizobacteria/fungi (PGPR/PGPF) could suppress plant diseases by producing inhibitory chemicals and inducing immune responses in plants against phytopathogens. As biofertilizers and biopesticides, PGPR and PGPF are considered as feasible, attractive economic approach for sustainable agriculture; thus, resulting in a "win-win" situation. Several PGPR and PGPF strains have been identified as effective BCAs under environmentally controlled conditions. In general, any MBCA must overcome certain challenges before it can be registered or widely utilized to control diseases/pests. Successful MBCAs offer a practical solution to improve greenhouse crop performance with reduced fertilizer inputs and chemical pesticide applications. This current review aims to fill the gap in the current knowledge of plant growth-promoting microorganisms (PGPM), provide attention about the scientific basis for policy development, and recommend further research related to the applications of PGPM used for commercial purposes.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alshaymaa I. Ahmed
- Department of Agricultural Microbiology, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Alia A. M. Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School, of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Shaimaa H. Negm
- Department of Home Economic, Specific Education Faculty, Port Said University, Port Said, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|